A= 5y^4 + 7x - 2z3 khi (x^2-1)^2+(y-z)^4 = 0
Tính A
Tính giá trị biểu thức A=7x+5y^4-2z^5 tại x,y,z thỏa mãn (x+y-2)^2+(y-z)^2=0
a) Cho 2x - 5y = 0. Tìm min của biểu thức: \(x^2+y^2\)
b)Tính giá trị của biểu thức: \(A=5y^4+7x-2z^5\)tại \(\left(x^2-1\right)+\left(y-z\right)^2=16\)
a) \(2x-5y=0\Rightarrow2x=5y\Rightarrow x=\dfrac{5y}{2}\Rightarrow x^2=\dfrac{25y^2}{4}\)
\(Min=x^2+y^2=\dfrac{25y^2}{4}+y^2=\left(\dfrac{25}{4}+1\right)y^2=\dfrac{29}{4}y^2\ge0\)
Đẳng thức khi \(y=0\Rightarrow x=0\)
\(\Rightarrow Min\left[x^2+y^2\right]=0\)
b) \(A=5y^4+7x-2z^5\)
Tại \(\left(x^2-1\right)+\left(y-z\right)^2=16\) xem lại đề
TRONG BẢNG XẾP HẠNG CÓ NHIỀU NGƯỜI GIỎI LẮM MÀ SAO CỨ NHÀ MK HOÀI VẬY
Anh Triêt T giúp đc chưa đừng cầu trong tin nhắn nữa ( Mà nghe ns hồi trước you học giỏi lắm bài lớp 12 lớp 7 làm đc giỏi dễ sợ )
Bài 1: Thực hiện phép tính
1, (3y +1/3y^4)^2
2, (-3x^2 -1/2x)^2
3, (x^2 +2x -3)^2
4, 3 (x+3) (x-3) - (x-9)^2
5, (x^n +x^n:1)^2
6, (5x-3y)^2 - (5x +3y)^2
7, (3x -x^2 +5)^2
8, (-2x +5y)^3
9, (1/3x^2 -5y^3)^3
10,(m^2n^3+n^2m^3) (m^2n^3 - n^2m^3)
11, (7x+6y)^2 - (7x +6y) (7x -6y)
12, (x-y)^2 +(y+x)^2 - (2x -y)^z
13, (a-b)^3 + (a+b)^3
14, (a-b)^3 -(a-b)^3
15, (3x-5y)^4 - (3x +5y)^4
Mọi người làm giúp mình vs
Tính giá trị của biểu thức : A= 5y^4+7x-2x^5 tại (x^2-10+(y-z)^2=16
X+1/4=y-2/2=z+2/3 và 7x+5y-z=12
Tính Giá Trị Biểu Thức :A=5y4+7x-2z5 Tai (x2-1)+(y-z)2=16
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
a)1/6x + 1/10x - 4/15x + 1=0
b)(1/7x - 2/7)(-1/5x + 3/5)(1/3x + 4/3)=0
c)(x - 1/3)(y - 1/2)(z - 5)=0 và x + 2=y + 1=z + 3
a)\(\dfrac{1}{6}x+\dfrac{1}{10}x-\dfrac{4}{15}x+1=0\)
\(\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{4}{15}\right).x+1=0\)
\(\left(\dfrac{5}{30}+\dfrac{3}{30}-\dfrac{8}{30}\right).x+1=0\)
\(0.x+1=0\)
\(0.x=-1\)
=> Không có giá trị nào của x.
Vậy...
b)\(\left(\dfrac{1}{7}x-\dfrac{2}{7}\right).\left(-\dfrac{1}{5}x+\dfrac{3}{5}\right).\left(\dfrac{1}{3}x+\dfrac{4}{3}\right)=0\)
=> \(\dfrac{1}{7}x-\dfrac{2}{7}=0hoặc-\dfrac{1}{5}x+\dfrac{3}{5}=hoăc\dfrac{1}{3}x+\dfrac{4}{3}=0\)
+)\(~\dfrac{1}{7}x-\dfrac{2}{7}=0\) +) \(-\dfrac{1}{5}x+\dfrac{3}{5}=0\) +) \(\dfrac{1}{3}x+\dfrac{4}{3}=0\)
\(\dfrac{1}{7}x=-\dfrac{2}{7}\) \(-\dfrac{1}{5}x=-\dfrac{3}{5}\) \(\dfrac{1}{3}x=-\dfrac{4}{3}\)
\(x=2\) \(x=3\) \(x=-4\)
Vậy...
a 1/6x+1/10x-4/15x+1=0
(1/6+1/10-4/15)x+1=0
0x+1=0
0x=-1
x=-1/0
Vậy không có x (vì không có số nào chia cho 0)