CMR: \(x^3+y^3\le x^2+y^2\) với x,y > 0 và \(x^3+y^4\le x^2+y^3\)
Cho x,y > 0 thỏa mãn x^3 + y^4 < x^2 + y^3
CMR: a) \(x^3+y^2\le x^2+y^2\)
b) \(x^2+y^3\le x+y^2\)
Giả thiết phải là \(\le\)
Ta có: \(x^3+y^4\le x^2+y^3\)
a) Ta có:
\(\left(x^2+y^2\right)-\left(x^3+y^3\right)\ge x^2+y^2-x^3-y^3-\left(x^2+y^3\right)+\left(x^3+y^4\right)\)
\(=y^2-2y^3+y^4=\left(y-y^2\right)^2\ge0\)
\(\Rightarrow x^3+y^3\le x^2+y^2\)
b) Tương tự câu a
+ từ x^2+y^2+xy=1 => (x - 1/2*y)^2 + 3/4*y^2 = 1
đặt x - 1/2*y = sina và √3/2*y = cosa <> y = 2cosa / √3 và x = sina + cosa /√3
thay vào b ta có
b = (sina + cosa/√3)^2 - ( sina + cosa/√3). 2cosa/√3 + 8/3*(cosa)^2
= (sina)^2 + sin2a/√3 + (cosa)^2/3 - sin2a/√3 - 2/3*(cosa)^2 + 8/3*(cosa)^2
= (sina)^2 + 7(cosa)^2 / 3 = 1+ 4(cosa)^2 / 3 = 1 + 2(1 + cos2a) / 3 = 5/3 + 2cos2a/ 3
=> 1=< b <=7/3
+ min = 1 khi cos2a = -1 hay cosa = 0 <> y = 0 và x = +- 1
+ max = 7 / 3 khi cos2a = 1 hay sina = 0 <> x = 1 + 1/√3 và y = 2 / √3 hoạc x = 1 - 1 / √3
và y = -2 / √3
giúp mình vs
CMR với mọi a,b,c ta có
(a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
CMR: \(\frac{1}{x}+\frac{1}{y}\le-2\) biết \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)và x.y > 0
Phương trình đề bài cho tương đương:
\(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Rightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
\(\Rightarrow x+y+2=0\) (thừa số thứ 2 luôn > 0)
\(\Rightarrow x+y=-2\)
Ta có: \(\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\left(-2\right)^2\ge4xy\Rightarrow xy\le1\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\le-\frac{2}{1}=-2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=-2\end{cases}\Rightarrow x=y=-1}\)
Bạn ơi tại sao: \(\left(x+y+z\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Cho cac so duong x,y thoa man \(x^2+y^3\ge y^3+y^4\)
Cmr \(x^3+y^3\le x^2+y^2\le x+y\le2\)
Ta co: \(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^4\ge2y^3-y^2\)
\(\Rightarrow x^2+y^3\ge x^3+y^4\ge2y^3-y^2+x^3\Leftrightarrow x^2+y^2\ge x^3+y^3\)
k giai tiep
Cho x,y,z > 0 và \(x+y+z\le\dfrac{3}{2}\). CMR :
\(\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\ge\dfrac{3}{2}\sqrt{17}\)
Cho \(x,y,z\ge0,x+y+z=2\)
CMR: \(x^2y+y^2z+z^2x\le x^3+y^3+z^3\le1+\dfrac{1}{2}\left(x^4+y^4+z^4\right)\)
BĐT bên trái rất đơn giản, chỉ cần áp dụng:
\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được
Ta chứng minh BĐT bên phải:
\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
Thật vậy, ta có:
\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)
\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)
\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị
CMR: \(\frac{2\sqrt{x}}{x^3+y^3}+\frac{2\text{√}y}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
với X, Y, Z > 0
Cho x,y,z là 3 số thực tùy ý thỏa mãn x+y+z = 0 và \(-1\le x\le1,-1\le y\le1,-1\le z\le1\)
Cmr đa thức x2 +y4+z6 có giá trị không lớn hơn 2
cbfffffffffffffffffffffffffffffffffffffffsdhnc
b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt
Cho x, y t/m \(\hept{\begin{cases}\text{x, y }\varepsilon R\\0\le x;y\le\frac{1}{2}\end{cases}}\). CMR: \(\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}\le\frac{2\sqrt{2}}{3}\)
Áp dụng bđt cô si để tìm GTLN của các bt sau:
a) \(y=\left(x+3\right)\left(5-x\right)\) với -3≤x≤5
b) \(y=x\left(6-x\right)\) với 0≤x≤6
c) \(y=\left(x+3\right)\left(5-2x\right)\) với -3≤x≤\(\frac{5}{2}\)
d) y=(2x+5)(5-x) với \(\frac{-5}{2}\le x\le5\)
e) y=(6x+3)(5-2x) với \(\frac{-1}{2}\le x\le\frac{5}{2}\)
f) \(y=\frac{x}{x^2+2}\) với x>0
g) \(y=\frac{x^2}{\left(x^2+3\right)^3}\)
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)
b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)
\("="\Leftrightarrow x=3\)
c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow x=-\frac{1}{4}\)
d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)
\("="\Leftrightarrow x=\frac{5}{4}\)
e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)
\("="\Leftrightarrow x=1\)
f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)
\("="\Leftrightarrow x=\sqrt{2}\)
g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)
\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)