11x+11y-x mũ 2 -xy
Giải hệ
\(\left\{{}\begin{matrix}x^2+y^4+xy=2xy^2+7\\xy^3-x^2y+4xy+11x=28+11y^2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^4+xy=2xy^2+7\\xy^3-x^2y+4xy+11x=28+11y^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y^2\right)^2+xy-7=0\\\left(x^{ }-y^2\right)\left(11-xy\right)+4\left(xy-7\right)=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-y^2=a\\xy-7=b\end{matrix}\right.\) hệ trở thành \(\left\{{}\begin{matrix}a^2+b=0\\a\left(4-b\right)+4b=0\end{matrix}\right.\)\(\Rightarrow a\left(4+a^2\right)-4a^2=0\Leftrightarrow a\left(a^2-4a+4\right)=0\Leftrightarrow a\left(a-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}a=0;b=0\\a=2;b=-4\end{matrix}\right.\)
Giải từng trường hợp rồi kết hợp nghiệm
phân tích đa thức thành nhân tử :(gợi ý : ko phải câu nào cũng có kết quả)
a)11x+11y+x^2+xy
b)225+x^2-4xy+y^2
a) 11x + 11y + x2 + xy
= 11.(x+y) + x.(x+y)
= (x+y).(11+x)
b) 255 + x2 - 4xy + y2
= 255 + 2xy + x2 -2xy + y2
= 255 + 2xy + (x-y)2
...
Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử :
a. 11x+11y-x^2-xy
b. xy-xz+y-z
c. x^2-6x-y^2+9
Phân tích đa thức thành nhân tử
\(a,11x+11y+x^2+xy\) \(b,225-4x^2-4xy-y^2\)
a) Ta có: \(11x+11y+x^2+xy\)
\(=11\left(x+y\right)+x\left(x+y\right)\)
\(=\left(x+y\right)\left(11+x\right)\)
b) Ta có: \(225-4x^2-4xy-y^2\)
\(=225-\left(4x^2+4xy+y^2\right)\)
\(=15^2-\left(2x+y\right)^2\)
\(=\left(15-2x-y\right)\left(15+2x+y\right)\)
a, sai đề ko zậy ak
b, 225 - 4x2 - 4xy - y2
= 225 - (4x2 + 4xy + y2)
= 225 - [(2x)2 + 2*2xy+y2]
= 152 - (2x + y)2
= [15 - (2x + y)] * [15 + (2x+y)]
= (15 - 2x - y) * (15 + 2x + y)
Chúc bạn học có hiệu quả!!
Cho x,y, z là số dương, xy +yz+zx=3xyz
Tìm giá trị lớn nhất
P=\(\frac{11x+4y}{4x^2-xy+2y^2}+\frac{11y+4z}{4y^2-yz+2z^2}+\frac{11z+4x}{4z^2-zx+2x^2}\)
Dự đoán dấu "=" xảy ra khi \(x=y=z=1\) ta tìm được \(P=9\)
Ta sẽ chứng minh nó là \(GTLN\) của \(P\)
Thật vậy, ta cần chứng minh
\(Σ\frac{11x+4y}{4x^2-xy+2y^2}\le\frac{3\left(xy+yz+xz\right)}{xyz}\)
\(\Leftrightarrow\left(\frac{3}{x}-\frac{11x+4y}{4x^2-xy+2y^2}\right)\ge0\)
\(\LeftrightarrowΣ\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}\ge0\)
\(\LeftrightarrowΣ\left(\frac{\left(x-y\right)\left(x-6y\right)}{x\left(4x^2-xy+2y^2\right)}+\frac{1}{y}-\frac{1}{x}\right)\ge0\)
\(\LeftrightarrowΣ\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(4x^2-xy+2y^2\right)}\ge0\) (luôn đúng)
Vậy \(P_{Max}=9\) khi \(x=y=z=1\)
cho x,y,z là các số dương thay đổi thỏa mãn : xy+yz+zx=3xyz. tìm max
\(P=\dfrac{11x+4y}{4x^2-xy+2y^2}+\dfrac{11y+4z}{4y^2-yz+2z^2}+\dfrac{11z+4x}{4z^2-zx+2x^2}\)
Cách giải khác:
Ta chứng minh bổ đề:
\(\dfrac{11x+4y}{4x^2-xy+2y^2}\le\dfrac{2}{x}+\dfrac{1}{y}\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(Đúng)
Tương tự ta cho 2 BĐT còn lại ta cũng có:
\(\dfrac{11y+4z}{4y^2-yz+2z^2}\le\dfrac{2}{y}+\dfrac{1}{z};\dfrac{11z+4x}{4z^2-xz+2x^2}\le\dfrac{2}{z}+\dfrac{1}{x}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}=\dfrac{3\left(xy+yz+xz\right)}{xyz}=9\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến đổi biến (a,b,c)->(x,y,z) là y nhau
Phân tích các đa thức sau thành nhân tử: a) x3 - 2x2 + x b) x2 – 2x – 15 c) 5x2y 3 – 25x3y 4 + 10x3y 3 d) 12x2y – 18xy2 – 30y2 e) 5(x-y) – y.( x – y) g)36 – 12x + x2 h) 4x2 + 12x + 9 i) 11x + 11y – x 2 – xy
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
a)(x-5)\(^2\)-16
b)25-(3-x)\(^2\)
c)49(y-4)\(^2\)-9(y+2)\(^2\)
d)11x+11y-x\(^2\)-xy
e)x\(^2\)-xy-8x+8y
Giải:
a) \(\left(x-5\right)^2-16\)
\(=\left(x-5-4\right)\left(x-5+4\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
b) \(25-\left(3-x\right)^2\)
\(=\left(5-3+x\right)\left(5+3-x\right)\)
\(=\left(2+x\right)\left(8-x\right)\)
c) \(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left[7\left(y-4\right)-3\left(y+2\right)\right]\left[7\left(y-4\right)+3\left(y+2\right)\right]\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
d) \(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
e) \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
Vậy ...
\(\left(x-5\right)^2-16\)
\(=\left(x-5\right)^2-4^2\)
\(=\left(x-5-4\right)\left(x-5+4\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(25-\left(3-x\right)^2\)
\(=5^2-\left(3-x\right)^2\)
\(=\left(5+3-x\right)\left(5-3+x\right)\)
\(=\left(8-x\right)\left(2+x\right)\)
\(49\left(y-4\right)^2-9\left(y+2\right)^2\)
\(=7^2\left(y-4\right)^2-3^2\left(y+2\right)^2\)
\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)
\(=\left(4y-34\right)\left(10y-22\right)\)
\(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
\(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
Phân tích thành nhân tử:
\(11x+11y-x^2-xy\)
\(x^2-xy-8x+8y\)
\(x^2-6x-y^2+9\)
\(x^2+2xy+y^2-xz-yz\)
Giúp mình vs mn mình đang vội
Mai cho bn đấy tui dg định off =))
a)\(11x+11y-x^2-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
b)\(x^2-xy-8x+8y\)
\(=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
c)\(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
d)\(x^2+2xy+y^2-xz-yz\)
\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
a) \(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(11-x\right)\)
b) \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
c) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
d) \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)