Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dương lý khánh hạ
Xem chi tiết
Trần Minh ngoc
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
Nguyễn Thị Bích Ngọc
1 tháng 7 2019 lúc 21:38

A= 2xyz - xy - yz - zx +1 
= z(xy-1) - (xy-1) + zy(x-1) - z(x-1) 
= (z-1)(xy-1) + z(x-1)(y-1) 

Do x,y,z >1 nên A>0 suy ra đpcm

nguồn:Cho A= 2xyz - xy - yz - zx +1. Chứng minh A>0 với mọi x>1, y>1, z>1.

A= 2xyz - xy - yz - zx +1 
= z(xy-1) - (xy-1) + zy(x-1) - z(x-1) 
= (z-1)(xy-1) + z(x-1)(y-1) 

Do x,y,z >1 nên A>0 suy ra đpcm

Huy Phạm
Xem chi tiết
Akai Haruma
30 tháng 1 2023 lúc 23:53

Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$

$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)

$\Leftrightarrow 2t^3+9t^2-27\geq 0$

$\Leftrightarrow (t+3)^2(2t-3)\geq 0$

$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$

Chiyuki Fujito
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 4 2021 lúc 16:45

\(P=xy+yz+zx-2xyz=\left(xy+yz+zx\right)\left(x+y+z\right)-2xyz\)

\(P=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+xyz\ge0\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow z\le\dfrac{1}{3}\)

\(P=xy\left(1-2z\right)+z\left(x+y\right)=xy\left(1-2z\right)+z\left(1-z\right)\)

\(P\le\dfrac{\left(x+y\right)^2}{4}\left(1-2z\right)+z\left(1-z\right)=\dfrac{\left(1-z\right)^2\left(1-2z\right)}{4}+z\left(1-z\right)\)

\(P\le\dfrac{1+z^2-2z^3}{4}=\dfrac{1}{4}+\dfrac{z.z.\left(1-2z\right)}{4}\le\dfrac{1}{4}+\dfrac{1}{27.4}\left(z+z+1-2z\right)^3=\dfrac{7}{27}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Lionel Messi
Xem chi tiết
Cù Đức Anh
4 tháng 12 2021 lúc 22:33

sai đề

Nguyễn Việt Lâm
4 tháng 12 2021 lúc 23:04

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

Nguyễn Vũ Thắng
Xem chi tiết
ngoc thach nguyen
Xem chi tiết
Nguyễn Phạm Hồng Anh
23 tháng 12 2019 lúc 20:04

Ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+xz\left(x+z\right)\)

\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)

\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)

\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

Khách vãng lai đã xóa
Đình Khang
Xem chi tiết
Đình Khang
15 tháng 12 2019 lúc 21:43

\(x^{2019}+y^{2019}+z^{2019}=\left(x+y+z\right)^{2019}\)

Em xin lỗi, đây mới là đề đúng ạ !!

Khách vãng lai đã xóa
Phạm Tuấn Kiệt
Xem chi tiết
Đỗ Ngọc Hải
27 tháng 12 2017 lúc 17:17

Hệ pt 3 ẩn mà chỉ có 2 pt à

Phạm Tuấn Kiệt
27 tháng 12 2017 lúc 17:31

Bài nào chả vậy

Đỗ Ngọc Hải
27 tháng 12 2017 lúc 17:43

\(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\Rightarrow\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\)
Thay \(\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\)vào pt \(\frac{2}{xy}=4+\frac{1}{z^2}\) ta đc pt:
\(\frac{2}{xy}=4+4+\frac{1}{x^2}+\frac{1}{y^2}-\frac{4}{x}-\frac{4}{y}+\frac{2}{xy}\)
\(\Leftrightarrow\left(\frac{1}{x^2}-\frac{4}{x}+4\right)+\left(\frac{1}{y^2}-\frac{4}{y}+4\right)=0\)
\(\Leftrightarrow\left(\frac{1}{x}-2\right)^2+\left(\frac{1}{y}-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=2\\\frac{1}{y}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\Rightarrow z=-\frac{1}{2}}\)
Vậy nghiệm của hpt là (x;y;z)=(1/2;1/2;-1/2)