Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
HT2k02
5 tháng 4 2021 lúc 18:07

a)ĐKXĐ: \(x\ne1\)

\(\dfrac{mx+1}{x-1}=1\Rightarrow mx+1=x-1\Leftrightarrow\left(m-1\right)x=-2\)

Nếu \(m=1\Rightarrow0x=-2\left(VN\right)\)

Nếu \(m\ne1\)

\(\left(1\right)\Rightarrow x=\dfrac{-2}{m-1}\)

Vậy nếu m=1 thì phương trình vô nghiệm

n khác 1 thì phương trình có nghiệm \(x=\dfrac{-2}{m-1}\)

 

b) ĐKXĐ: x khác -1

\(\dfrac{\left(m-2\right)x+3}{x+1}=2m-1\Rightarrow\left(m-2\right)x+3=\left(x+1\right)\left(2m-1\right)\\ \Leftrightarrow\left(m-2\right)x+3=\left(2m-1\right)x+2m-1\Leftrightarrow\left(2m-1\right)x-\left(m-2\right)x=3-\left(2m-1\right)\\ \Leftrightarrow\left(m+1\right)x=4-2m\)

Nếu m =-1 thì \(0x=6\left(VN\right)\)

Nếu m khác -1 thì phương trình có nghiệm duy nhất \(x=\dfrac{4-2m}{m+1}\)

Min Suga
Xem chi tiết
vanh njdnv
Xem chi tiết
kagamine rin len
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 13:16

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

Nguyễn Thị Hà Vy
Xem chi tiết
Quốc Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 14:12

2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)

\(\Leftrightarrow a^2x+ab=b^2x-b^2\)

\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)

\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)

\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)

Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)

Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)

Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)

cẩm ly nguyễn
Xem chi tiết
Thanh Tùng DZ
15 tháng 1 2019 lúc 15:47

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\frac{m^2.\left(x+2-x+2\right)\left(x+2+x-2\right)}{8}-4x=m^2-2m+1+6m+3\)

\(\frac{8m^2x}{8}-4x=m^2+4m+4\)

\(x.\left(m-2\right)\left(m+2\right)=\left(m+2\right)^2\)

+) với m = 2 thì 0x = 4 ( vô nghiệm )

+) với m = -2 thì 0x = 0 ( vô số nghiệm )

+) với m \(\ne\)2 và -2 thì x có 1 nghiệm \(\frac{m+2}{m-2}\)

Nguyễn Thị Gia An
Xem chi tiết