A= x^3-x^2-x-2/x^5-3x^4+4x^3-5x^2+3x-2
a) Rút gọn
b) CM A>0 với mọi x khác 2
1. tìm x biết :
x(x+1)(x2+x+3)=4
2. cho A=\(\frac{x^3-x^2-x-2}{x^5-3x^4+4x^3-5x^2+3x-2}\)
a) rút gọn A
b) CMR A>0 với mọi x khác 2
1.
x(x+1)(x2+x+3) = (x2+x)(x2+x+3)
đặt x2+x = t
=> t(t+3)=4
=>t;t+3 thuộc Ư(4)
=> t;t+3 thuộc -1;1-2;2-4;4
tự xét lần lượt các TH nha bạn
` P = ( (3+x)/(3-x) - (3-x)/(3+x) - (4x^2)/( x^2-9) ) . ( (5)/(3-x) - (4x+2)/(3x-x^2) ) `
a) Rút gọn
b) Tính P với `x^2 - 4x + 3 = 0 `
c) Tìm x để P > 0
d) Tìm x thuộc Z để P thuộc Z
e) Tìm x để P = -4
g) Tìm GTNN của P với x thuộc Z
h) Tìm x để P > 4x
a:
Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)
\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)
\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)
\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)
b: x^2-4x+3=0
=>x=1(nhận) hoặc x=3(loại)
Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)
c: P>0
=>x-2>0
=>x>2
d: P nguyên
=>4x^2 chia hết cho x-2
=>4x^2-16+16 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}
=>x thuộc {1;4;6;-2;10;-6;18;-14}
B1: A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a) Rút gọn
b) Tìm x thuộc Z để A nguyên
c) Tính A với x=-2; x=-3
d) Tìm x dể A=1
B2: Phân tích thành nhân tử
a) x2-2xy-4+y2
b) x2-4x+3
c) 9x2(x-y)-x+y
B3: Rút gọn
a) (x-2)3-(x+2)3-(x-1)(x2+x+1)
b) (5x+3y)(5x-3y)+(4x-3y)2
B4: P(x)=x4+x3+mx2-3x+5
a) Khi m=4, thực hiện phép chia P(x) cho x2-x+1
b) Tìm m để P(x)⋮(x-1)
Cho \(A= {x^3-x^2-x-2 \over x^5-3x^4+4x^3-5x^2+3x-2}\)
CMR A>0 với mọi x \(\neq\) 2
3x^4 + 3x^2y^2 + 6x^3y - 27x^2
x^4 + x^3 - x^2 + x
2x^5 - 6x^4 - 2a^2x^3 - 6ax^3
x^5 + x^4 + x^3 + x^2 + x + 1
x^3 - 1 + 5x^2 - 5 + 3x - 3
1/4.(a + 1)^2 - 4/9.(a - 2)^2
12a^2b^2 - 3.(a^2b^2)^2
4x^2y^2 - (x^2 + y^2 - a^2)^2
(a + b + c)^2 + (a + b - c)^2 - 4c^2
x^3 - 1 + 5x^2 - 5 + 3x - 3
Rút gọn
a, (x-2).(3x-1).(3x+1)-2x.(4x-3)^2
b, ( 5x-7)^2 - ( 4x -3).(2x+3)^2- (x-3).(3x^2-5)
c, (2-5x)^2-4x.(3x+1)^2-(x-3).(x+3)
Rút gọn
a, (x-2).(3x-1).(3x+1)-2x.(4x-3)^2
b, ( 5x-7)^2 - ( 4x -3).(2x+3)^2- (x-3).(3x^2-5)
c, (2-5x)^2-4x.(3x+1)^2-(x-3).(x+3)
1)4x-20=0 ; 2) 5x+15=0 ; 3) 3x-5=7x+2 ; 4) 4x-(x-1)=2(1+x) ; 5) x2 -2x=0 ; 6) 2(3x-5)-3(x-2)=3(x+4) ; 7) (x+3)(2x-7)=0
8) 5x(x-3)+2x-6=0 ; 9) (3x-1)(2x-1)-(3x-1)(x+2)=0
10)|2x-1|+1=8 ; 11) |x-2|=3x+1 ; 12) |2x|=21-x
Giải các phương trình nha mọi người ^_^
Bài 1. Tính:
32x^m. 1/2x
(a+5).4
(3a-5b).2a
(a^m+2a^3). a^n
x(2x+1)
-6x+3.(7+2x)
Bài 2. Tìm x: 3x+2(5-x)=0
Bài 3. Rút gọn biểu thức
6(3p+4q)-8(5p-q)+(p-q).
Bài 3. tính giá trị biểu thức sau khi rút gọn:
5x(4x^2-2x+1)- 2x(10x^2-5x-2) với x= -15.
Bài 2:
3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = 0 - 10
<=> x = -10
=> x = -10
Bài 3:
6(3q + 4q) - 8(5p - q) + (p - q)
= 6.3p + 6.4q - 8.5p - (-8).q + p - q
= 18p + 24q - 40p + 8q + p - q
= (18p - 40p + p) + (24q + 8q - q)
= -21p + 31q
Bài 4:
5x(4x2 - 2x + 1) - 2x(10x2 - 5x - 2)
= 5x.4x2 + 5x.(-2x) + 5x.1 - 2x.10x2 + (-2x).(-5x) + (-2x).(-2)
= 20x3 - 10x2 + 5x - 20x3 + 10x2 + 4x
= (20x2 - 20x2) + (-10x2 + 10x2) + (5x + 4x)
= 0 + 0 + 9x
= 9x (1)
Thay x = -15 vào (1), ta có:
9.(-15) = -135
Vậy: Giá trị biểu thức sau khi rút gọn với x = -15 là: -135