Giải Bất phương trình
a/ mx+1\(\ge\)\(m^2+x\)(m : hằng)
Giải và biện luận bất phương trình
a) (m-1).x + m +2 > 2x + 4
b) m.(m-2).x < m - (x +1)
b: =>x(m^2-2m)-m+x+1<0
=>x(m^2-2m+1)<m-1
=>x(m-1)^2<m-1
TH1: m=1
BPT sẽ là 0x<0(vô lý)
TH2: m<>1
BPT sẽ có nghiệm là x<1/(m-1)
a: =>x(m-1)-2x>-m-2+4
=>x(m-3)>-m+2
TH1: m=3
BPT sẽ là 0x>-3+2=-1(luôn đúng)
TH2: m<3
BPT sẽ có nghiệm là x<(-m+2)/(m-3)
TH3: m>3
BPT sẽ có nghiệm là x>(-m+2)/(m-3)
Câu 1: Giải và biện luận các bất phương trình sau.
a. (x - 1)m < x + 2
b. 2x + \(m^2\) \(\ge\) m(x + 2)
c. 2x + 5m > mx - 2
d. (\(m^2\) + 2)x - 1 > 2x - m
e. \(m^2\)x - 2m \(\le\) -x - 3
f. \(m^2\)x + 2m < x + 1
Câu 2:
1. Tìm m để bất phương trình sau vô nghiệm; nghiệm đúng với mọi x thuộc R.
a. \(m^2\)x + 4m - 3 < x + \(m^2\)
b. \(m^2\)x - 3m \(\ge\) 4x + 2
2. Tìm m để 2 bất phương trình sau tương đương.
a. (m - 1)x - m + 3 > 0 và (m + 1)x - m + 2 > 0
b. (m - 1)x - m > 0 và (m + 1)x - m + 1 > 0
c. (m + 1)x - m - 3 > 0 và (m - 1)x - m - 2 > 0
\(\left\{{}\begin{matrix}x+y=2\\mx-y=m\end{matrix}\right.\) cho hệ phương trình
a) giải hệ phương trình khi m=-2
b)tìm m để phương trình có nghiệm nguyên
Thay \(m=-2\) vào \(mx-y=m\) \(\Leftrightarrow-2x-y=-2\)
\(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y=-4\\-2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2y+2x+y=-4-\left(-2\right)\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-2\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x+2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=0\end{matrix}\right.\)
Vậy tập nghiệm có hệ pt : \(\left(x;y\right)=\left(0;2\right)\)
Bất phương trình mx\(^2\)+2(m+3)x+m+1\(\ge\)0 vô nghiệm khi và chỉ khi
Gíai bất phương trinh MX+1\(\ge\)m bình phương +x
Bài 1: Giải và biện luận bất phương trình sau:
a) mx + 6 < 2x + 3m
b) (m2 + 9)x + 3 \(\ge\) m(1 - 6x)
c) m(m2x +2) < x + m2 + 1
Bài 2: Tìm m để bất phương trình vô nghiệm:
(m2 - m)x + m < 6x - 2
giải bất phương trình: m(2x-m)\(\ge\)2(x-m)+1
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
Tìm tập nghiệm của bất phương trình
a) \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
b) \(\dfrac{\left(x-1\right)\left(2x-5\right)\left(x+1\right)}{x+4}< 0\)