Tìm số tự nhiên n lớn nhất sao cho n chia hết cho tất cả các số có lập phương bé hơn n.
Tìm số tự nhiên n lớn nhất sao cho n chia hết cho tất cả các số có lập phương bé hơn n.
1. dùng 9 chữ số 1;2;3;....;9 viết tất cả các số tự nhiên có 9 chữ số nhau. hỏi các số lập được có chia hết cho 3; cho 9 không ? vì sao
2. tìm tập hợp các số tự nhiên n chia hết cho 2 và cho 5 biết 32 bé hơn hoặc bằng n bé hơn hoặc bằng 62
1.Chứng minh trong tất cả các số tự nhiên có 4 chữ số có số chia hết cho 4;9 và 125
2.Tìm số tự nhiên n nhỏ nhất sao cho n =11....11 chia hết cho 41
Số tự nhiên nhỏ nhất có 6 chữ số chia hết cho 9 là
Số tự nhiên nhỏ nhất có bốn chữ số khác nhau chia hết cho cả 2 và 3 là
Số tự nhiên n thỏa mãn 3n+8 chia hết cho n =2 là n =
Tìm số tự nhiên nhỏ nhất x khác 0 biết rằng ( x+5 ) :5 ; ( x-12 ) : 6 và ( 14+x) :7
Trả lời: x=
Số các số tự nhiên chia hết cho cả 3 và 4 trong khoảng 100 đến 200 là
Lập các số có ba chữ số khác nhau chia hết cho 3 mà không chia hết cho 2 từ các số 0;4;5;6.
Hỏi số lớn nhất trong các số lập được là số nào?
Trả lời: Số đó là
Nếu độ dài mỗi cạnh của một hình lập phương tăng lên 20 lần thì thể tích của nó sẽ tăng lên lần.
Số tự nhiên nhỏ nhất có sáu chữ số khác nhau chia hết cho cả 3 và 5 là
1)100008
2)1026
3)(n+2)(n+2)(n+2)+2 chia hết cho n+2
-Vì 3(n+2) chia hết cho n+2 nên 2 cũng chia hết cho n+2
Vậy n+2 là ước của 2 ; U(2)={1;2}
=>n+2=2
=> n=0
4)(x+5) chia hết cho 5 => x chia hết cho 5
(x-12) chia hết cho 6=> x chia hết cho 6
(x+14) chia hết cho 7=> x chia hết cho 7
số nhỏ nhất khác 0 chia hết cho 5;6;7 là :210
5)Nếu số đó chia hết cho cả 3 và 4 thì số đó chia hết cho 12
=> số đó là bội của 12 trong khoảng 100 đến 200
số đó \(\in\){108;120;132;144;156;168;;180;192}
Có 8 số
6)645
7)Nếu cạnh của hình Lập Phương = 2 (cm) thì thể tích ban đầu của nó là :2.2.2=8(\(cm^3\))
Độ dài của cạnh hình lập phương mới là :40(cm) thể tích của nó là :40.40.40=64000(\(cm^3\))
Thể tich của nó gấp :64000:8=8000 lần thể tích ban đầu
8)102345
1. Tìm số tự nhiên nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5 và 6 luôn có số dư là 1.
2. Tìm tất cả các số tự nhiên n sao cho
a) n chia hết cho 9 và n+1 chia hết cho 25
b) n chia hết cho 21 và n+1 chia hết cho 165
c) n chia hết cho 9, n +1 chia hết cho 25 và n+2 chia hết cho 4
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1. n = 301
2.a) n = 99
b) không có
c) n = 774
Tìm số tự nhiên n sao cho khi chia các số chính phương cho n thì số dư là tất cả các số chính phương nhỏ hơn n.
Please giúp mình đi!!!!!! Mai mình nộp rồi.
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Bài gì mà khó dọ!;-;
a, tìm tất cả các số tự nhiên N ( N # 0) sao cho 19n+7/7n+11 là số tự nhiên
b, với P là số nguyên tố lớn hơn 3
chứng tỏ : tích (P-1).(P+1) chia hết cho 24
help vs
Tham khảo: Cho p là số nguyên tố lớn hơn 3. CMR (p – 1)(p + 1) chia hết cho 24
a) Đặt phân số trên là M
Để M là số tự nhiên thì
19n+7 chia hết cho 7n+11
<=>7(19n+7)-19(7n+11) chia hết cho 7n+11
<=>133n+49-133n-209 chia hết cho 7n+11
<=>-160 chia hết cho 7n+11
\(\Leftrightarrow7n+11\in\left\{1;2;4;5;8;10;16;20;32;40;80;160;-1;-2;-4;-5;-8;-10;-16;-20;-32;-40;-80;-160\right\}\)
Mà n là số tự nhiên
=> 7n+11\(\ge\)11
Vậy các giá trị của 7n+11 là 16;20;32;48;80;160
Mặt khác 7n+11 chia 7 dư 4
=> Các giá trị 16;20;48;80;160 bị loại vì chia 7 có số dư \(\ne\)4
=> 7n+11=32
=>n=3
Vậy khi n=3 thì M=2
b) P là số nguyên tố lớn hơn 3
=> P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác vì P không chia hết cho 3
=>p=3k+1 hoặc 3k+2
Nếu P= 3k +1
=>P-1 =3k +0chia hết cho 3 => (P-1)(P+1) chia hết cho 3
Nếu P= 3k+2
=> P+1=3k +3 chia hết cho 3 => (P-1)(P+1) chia hết cho 3
=> Với mọi p là só nguyên tố lớn hơn 3 thì (p+1)(p-1) chia hết cho 3 (2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 và 3
Mà (8;3)=1
=>(P-1)(P+1) chia hết cho 8x3=24 (đpcm)
Tìm tất cả các số tự nhiên n sao cho:
a) 2.16 lớn hơn hoặc bằng 2^n>4
b) 9.27 bé hơn hoặc bằng 3^n bé hơn hoặc bằng 243
. Tìm các số tự nhiên n sao cho n lớn hơn 27,4 và bé hơn 32,9
Tìm số tự nhiên lớn nhất bé hơn 2012,5 là .......
Tìm số tự nhiên bé nhất lớn hơn 2020,4 là .......
\(n\in\left\{28;29;30;31\right\}\)
STN lớn nhất bé hơn 2012,5 là 2012
STN bé nhất lớn hơn 2020,4 là 2021
- Các số tự nhiên n sao cho n lớn hơn 27,4 và bé hơn 32,9 là : 28 , 29 , 30 , 31 , 32
- Số tự nhiên lớn nhất bé hơn 2012,5 là : 2012
- Số tự nhiên bé nhất lớn hơn 2020,4 là : 2021