Giải phương trình:\((x-5)(x-3)(x+2)(x+4)+24=0\)
Giải phương trình:
( x^2+3x+2)(x^2+3x+3)-2=0
( x+1)(x+2)(x+3)(x+4)-24=0
cái thứ nhất bạn dùng phương pháp đổi biến,đặt x^2+3x+2=a rùi thay vào và ptdt thành nhân tử thui
còn cái thứ 2 bạn nhân x+1 với x+4;x+2 với x+3 rùi lại dùng phương pháp đổi biến la ra thui
Bài 1 : Giải phương trình bằng cách đưa về phương trình tích
a) (2x+1) (3x-2) = (5x-8) (2x+1)
b) (4x^2-1) = (2x+1) (3x-5)
c) (x+1)^2 = 4 . (x^2-2x+1)
d) 2x^3 + 5x^2 - 3x = 0
Bài 2 : Giải phương trình :
a) 1/2x-3 - 3/x.(2x-3) = 5/x
b) x+2/x-2 - 1/x = 2/x.(x-2)
c) x+1/x-2 + x-1/x+2 = 2(x^2+2)/x^2-4
Bài 3 : Giải phương trình :
x^4 + x^3 + 3x^2 + 2x + 2 = 0
Help mee
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Bài 2:
a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)
=>-9x=-12
hay x=4/3
b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)
=>x2+2x-x+2=2
=>x2+x=0
=>x=0(loại) hoặc x=-1(nhận)
c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)
=>4=4(luôn đúng)
Vậy: S={x|x<>2; x<>-2}
(x-1)(x-3)(x-5)(X-2) - 20 = 0. giải phương trình
Cho phương trình : \(^{x^2-2\left(m-2\right)x+m^2-3m+5=0}\)
a) giải phương trình với m=3
a) Thay m=3 vào phương trình, ta được:
\(x^2-2x+3^2-3\cdot3+5=0\)
\(\Leftrightarrow x^2-2x+5=0\)
\(\Leftrightarrow x^2-2x+1+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+4=0\)(vô lý)
Vậy: Khi m=3 thì phương trình vô nghiệm
Giải phương trình
1) (x+1)(x+2)(x+4)(x+5)=40
2)x^3-7x^2+15 x-25=0
3)| x+4|=| 3-2x|
4)|2x-5|=2-x
1)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right).\left(x+2\right)\left(x+4\right)-40=0\)
\(\Leftrightarrow\left(x^2+6x+5\right).\left(x^2+6x+8\right)-40=0\)
Đặt \(a=x^2+6x+6\) ta có:
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)-40=0\)
\(\Leftrightarrow a^2+a-2-40=0\)
\(\Leftrightarrow a^2-6x+7x-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+6=6\\x^2+6x+6=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)
(\(x^2+6x+13=\left(x+3\right)^2+4>0\left(loại\right)\))
Vậy.................
3)
\(\left|x+4\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=3-2x\\x+4=-3+2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=7\end{matrix}\right.\)
Vậy..........
2)\(x^3-7x^2+15x-25=0\)
\(\Leftrightarrow x^3-5x^2-2x^2+10x+5x-25=0\)
\(\Leftrightarrow x^2\left(x-5\right)-2x\left(x-5\right)+5\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x^2-2x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-1\right)^2+4=0\left(loai\right)\end{matrix}\right.\)
Giải phương trình: X^4 - 4.X.\(\sqrt{3}\) - 5 = 0 (Tìm X)
Giải phương trình: \((x^2+3x+2)(x^2+7x+12)-24=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+5\right)=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+5=5\\x^2+5x+5=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2=-\frac{15}{4}\left(VL\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) ( TM )
Giải phương trình
x - 2/x + 2 — x + 2/x - 2 = 24/4 - x2
ĐKXĐ: \(x\ne\pm2\)
Ta có: \(\frac{x-2}{x+2}-\frac{x+2}{x-2}=\frac{24}{4-x^2}\)
\(\Leftrightarrow\frac{x-2}{x+2}-\frac{x+2}{x-2}=\frac{-24}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{-24}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2-4x+4-\left(x^2+4x+4\right)=-24\)
\(\Leftrightarrow x^2-4x+4-x^2-4x-4+24=0\)
\(\Leftrightarrow24-8x=0\)
\(\Leftrightarrow8x=24\)
hay x=3(tm)
Vậy: Tập nghiệm S={3}
Giải bất phương trình
a)x\(^2\)-2x=0
b)\(\dfrac{x+1}{x-2}\)-\(\dfrac{5}{x+2}\)=\(\dfrac{12}{x^2-4}\)+1
c)/x-1/-/3x-5/=0
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b.\(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(ĐK:x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12+\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-5\left(x-2\right)=12+\left(x^2-4\right)\)
\(\Leftrightarrow x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
\(a,x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\dfrac{x+1}{x-2}-\dfrac{5}{x-2}=\dfrac{12}{x^2-4}+1\) (ĐKXĐ : x ≠ 2 ; x ≠ -2)
\(\Rightarrow\left(x+1\right)\left(x+2\right)-5\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+3x+2-5x-10=12+x^2+2x-2x+4\)
\(\Leftrightarrow2x=24\)
\(\Leftrightarrow x=12\left(N\right)\)
câu c chưa học :vv
a)
<=> x (x-2 ) = 0
<=> x =0
x = 2
b)
đkxđ : x khác 2 , x khác -2
<=> \(\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{12}{x^2-4}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\dfrac{x^2+3x+2}{....}-\dfrac{5x-10}{....}-\dfrac{12}{...}+\dfrac{x^2-4}{....}=0\)
<=> \(x^2+3x+2-5x+10-12+x^2-4=0\)
<=> \(2x^2-2x-4=0\)
<=> x =2 (ktm)
Vậy..