Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền Trâm
Xem chi tiết
Đặng Thị Vân Anh
13 tháng 2 2020 lúc 20:06

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
31 tháng 7 2022 lúc 9:54

Bài 2: 

a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)

\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)

=>-9x=-12

hay x=4/3

b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)

=>x2+2x-x+2=2

=>x2+x=0

=>x=0(loại) hoặc x=-1(nhận)

c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)

=>4=4(luôn đúng)

Vậy: S={x|x<>2; x<>-2}

nguyen ha giang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2019 lúc 11:09

ĐKXĐ: ...

\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)

\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)

Đặt \(3x-4+\frac{1}{x}=a\)

\(\frac{2}{a}-\frac{7}{a+6}=6\)

\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)

\(\Leftrightarrow6a^2+41a-12=0\)

Nghiệm xấu, bạn coi lại đề

Curry
23 tháng 10 2019 lúc 21:53

GPT

\(\frac{3}{3x^2-4x+1}+\frac{13}{3x^2+2x+1}=\frac{6}{x}\)

Khách vãng lai đã xóa
 Huyền Trang
Xem chi tiết
𝑳â𝒎 𝑵𝒉𝒊
26 tháng 4 2020 lúc 14:50

\(\frac{2x-8}{6}-\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)

\(\Leftrightarrow\frac{4\left(2x-8\right)}{24}-\frac{6\left(3x+1\right)}{24}=\frac{3\left(9x-2\right)}{24}+\frac{2\left(3x-1\right)}{24}\)

\(\Leftrightarrow\frac{8x-32}{24}-\frac{18x+6}{24}=\frac{27x-6}{24}+\frac{6x-2}{24}\)

\(\Leftrightarrow8x-32-18x-6=27x-6+6x-2\)

\(\Leftrightarrow8x-18x-27x-6x=-6-2+32+6\)

\(\Leftrightarrow-42x=30\)

\(\Leftrightarrow x=-\frac{5}{7}\)

Khách vãng lai đã xóa
Minh Nhật Dương
Xem chi tiết
Đỗ Tuệ Lâm
13 tháng 2 2022 lúc 7:40

bài nó dàiiiiiiii , khôg hiểu chỗ nèo hỏi lại mình hen

\(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{3x^2+5x+2}=1\)

\(\Leftrightarrow\left(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{\left(3x+2\right)\left(x+1\right)}\right)=1\)

\(\Leftrightarrow\dfrac{2x\left(3x+2\right)\left(x+1\right)-\left(7x.\left(3x^2-x+2\right)\right)}{\left(3x^2-x+2\right).\left(3x+2\right)\left(x+1\right)}=\dfrac{-15x^3+17x^2-10x}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}\)

 

\(\Leftrightarrow\dfrac{-15x^3+17^2-10x }{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}-1=0\)

rồi quy đồng tùm lum từa lưa nữa được như này:

\(\Leftrightarrow\dfrac{-9x^4-27x^3+10x^2-18x-4}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}=0\)

\(\Leftrightarrow-9x^4-27x^3+10x^2-18x-4=0\)

\(\Leftrightarrow x^2+\dfrac{5}{3}.x+\dfrac{25}{26}=0\)

\(\Leftrightarrow x+\left(\dfrac{5}{6}\right)^2=\dfrac{1}{36}\)

Sử dụng công thức bậc 2 hen:

\(\Leftrightarrow x=\dfrac{-5\pm\sqrt{1}}{6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{1}}{6}\\x_2=\dfrac{-5-\sqrt{1}}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{2}{3}\\x_2=-1\end{matrix}\right.\)

 

nguyen ha giang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2019 lúc 11:13

Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:

\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)

Đặt \(3x-5+\frac{2}{x}=a\)

\(\frac{2}{a}+\frac{13}{a+6}=6\)

\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)

\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)

TR ᗩ NG ²ᵏ⁶
Xem chi tiết
Suzanna Dezaki
5 tháng 4 2021 lúc 18:23

|x-9|=2x+5

Xét 3 TH

TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)

TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)

TH3: x=9 =>0=23(L)

Vậy  x= 4/3

Suzanna Dezaki
5 tháng 4 2021 lúc 18:27

Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)

\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)

\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)

Suzanna Dezaki
5 tháng 4 2021 lúc 18:31

Ta có:

\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\)

\(\dfrac{2\left(x+3\right)+3\left(x-3\right)}{x^2-9}=\dfrac{3x+5}{x^2-9}\)

\(5x-4=3x+5\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\)

Hưng
Xem chi tiết
Lê Văn Thắng
10 tháng 1 2015 lúc 14:13

Giải

Đặt A = \(\sqrt{x^2+11x-6}-3\sqrt{x+6}\)

      B = \(\sqrt{x^2+3x-2}-3\sqrt{x+2}\)

Theo bài ra ta có A + B = 4  (1)

Mặt khác ta có A2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)(2)

Từ (1) ta có A = 4 - B thế vào (2) ta có 16 - 8B + B2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)

Hay B + x + 2 - 3\(\sqrt{2x-1}\)= 0\(\Rightarrow\)\(\sqrt{x^2+3x-2}-3\sqrt{x+2}+x+2\) - \(3\sqrt{2x-1}\)\(\Rightarrow\)\(\sqrt{\left(x+2\right)\left(2x-1\right)}\) - \(3\sqrt{2x-1}+\sqrt{x+2}\left(\sqrt{x+2}-3\right)\)= 0

Hay \(\sqrt{2x-1}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}\left(\sqrt{x+2}-3\right)=0\)

\(\Rightarrow\left(\sqrt{x+2}-3\right)\left(\sqrt{2x-1}+\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Leftrightarrow x=7\)

Thử lại x = 7 thỏa mã bài ra. Vậy nghiệm của phương trình la x = 7

Hưng
10 tháng 1 2015 lúc 21:32

câu trả lời hay đấy ,còn cách giải khác không ,giải cho mình nốt các bài còn lại đi

nguyen ha giang
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 6 2019 lúc 21:55

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow\left(2x-3+\frac{1}{x}\right)\left(2x+5+\frac{1}{x}\right)=9\)

Đặt \(2x-3+\frac{1}{x}=a\)

\(a\left(a+8\right)=9\)

\(\Leftrightarrow a^2+8a-9=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-3+\frac{1}{x}=1\\2x-3+\frac{1}{x}=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x+1=0\\2x^2+6x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)

Dung Viet Nguyen
Xem chi tiết
Dung Viet Nguyen
9 tháng 11 2017 lúc 13:06

a) | 2x - 3 | = x - 5

Bình phương hai vế phương trình đã cho ta được phương trình hệ quả . Ta có :

| 2x - 3 | = x - 5 \(\Rightarrow\) ( 2x - 3 )2 = ( x - 5 )2

\(\Leftrightarrow\) 4x2 - 12x + 9 = x2 - 10x + 25 

\(\Leftrightarrow\) 3x2 - 2x - 16 = 0

Phương trình cuối có hai nghiệm x1 = -2 ; x2 = 8/3

Vậy phương trình trên là vô nghiệm