giải phương trình:\(\sqrt{x^2+2x+5}+\sqrt{x^2-6x+10}=5\)
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)
giải phương trình :
a, \(\sqrt{x-3}+\sqrt[3]{x^2+1}+x^2+x-2=0\)
b,\(4x^2+\sqrt{2x+3}=8x+1\)
c, \(2x^2-6x+10-5\left(x-2\right)\sqrt{x+1=0}\)
a.
ĐKXĐ: \(x\ge3\)
(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó
Pt tương đương:
\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)
Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)
\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)
Pt vô nghiệm
b.
ĐKXĐ: \(x\ge-\dfrac{3}{2}\)
Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)
Đặt \(\sqrt{2x+3}=t\ge0\) ta được:
\(t^2-t-\left(4x^2-6x+2\right)=0\)
\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)
c.
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)
\(\Leftrightarrow2\left(x-2\right)^2-5\left(x-2\right)\sqrt{x+1}+2\left(x+1\right)=0\)
Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{x+1}=b\end{matrix}\right.\) ta được:
\(2a^2-5ab+2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=x-2\left(x\ge2\right)\\\sqrt{x+1}=2x-4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-4x+4\\x+1=4x^2-16x+16\end{matrix}\right.\) (\(x\ge2\))
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\) (đã loại nghiệm)
Giải phương trình :
\(2\sqrt{2x-2}+5\sqrt{6x-29}+\sqrt{10-x}+\left(9-x\right)\sqrt{x-8}=x^2-15x+88\)
Nó có 1 nghiệm là 9
Bạn chứng minh nó là nghiệm duy nhất đi
Giải các phương trình sau:
a) \(\sqrt{x^2-6x+9}=4-x\)
b) \(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)
Lời giải:
a.
PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)
b.
ĐKXĐ: $x\geq \frac{3}{2}$
PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)
\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)
\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)
\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)
\(\Leftrightarrow\left|x-3\right|=4-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=7\)
hay \(x=\dfrac{7}{2}\left(nhận\right)\)
giải phương trình
a)\(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\)
b)\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:
\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)
Cái ngoặc to vô nghiệm.Do đó x = 1(TM)
Vậy...
P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn
Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<
a.\(DK:x\in R,1\le y\le5\)
.\(\Leftrightarrow\sqrt{4-\left(3-y\right)^2}-\sqrt{\left(x-3\right)^2+1}=1\)
Ta co:\(\sqrt{4-\left(3-y\right)^2}\le2\left(1\right)\)
\(\sqrt{\left(x-3\right)^2+1}\ge1\left(1\right)\)
Tru ve voi ve cua (1) va (2) ta duoc:
\(\sqrt{4-\left(3-y\right)^2}-\sqrt{\left(x-3\right)^2+1}\le1\)
Dau '=' xay ra khi \(x=y=3\)
Vay nghiem cua PT la \(x=y=3\)
Giải phương trình: \(\sqrt{x^2-6x+10}+\sqrt{x^2-6x+18}=6x-5-x^2\)
bai nay trang 10 trong sanh toan nang cao va cac chuyen de (dai so ) 9
Dòng 1 trang 29 có ghi
X=3
rẤT TIẾC TRANG 28 BỊ MẤT KHÔNG BIẾT DOẠN ĐẦU THẾ NÀO?
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
giải phương trình: \(2x^2-6x-5\left(x-2\right)\sqrt{x+1}+10=0\)
ĐK: \(x\ge-1\)
\(PT\Leftrightarrow2\left(x-2\right)^2+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)
Đặt \(x-2=a,\sqrt{x+1}=b\left(a\ge-3,b\ge0\right)\)
\(PT\Leftrightarrow2a^2+2b^2-5ab=0\)
\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}\)
Đến đây dễ r nhé :P
giải phương trình
\(\sqrt{x^2-6x+9}=2x-5\)
ĐK: \(\forall x\in R\)
PT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x^2-6x+9=4x^2-20x+25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\3x^2-14x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=\dfrac{8}{3}\left(tm\right)\end{matrix}\right.\)
Điều kiện :
\(\left\{{}\begin{matrix}x^2-6x+9\ge0\\2x-5\ge0\end{matrix}\right.\)⇔ \(x\ge\dfrac{5}{2}\)
Ta có :
\(\left(\sqrt{x^2-6x+9}\right)^2=\left(2x-5\right)^2\)
⇔ \(x^2-6x+9=4x^2-20x+25\)
⇔ \(3x^2-14x+16=0\)
⇔\(\left\{{}\begin{matrix}x=2\left(loại\right)\\x=\dfrac{8}{3}\left(tm\right)\end{matrix}\right.\)
Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge\dfrac{5}{2}\)
\(\sqrt{x^2-6x+9}=2x-5\Rightarrow\sqrt{\left(x-3\right)^2}=2x-5\)
\(\Rightarrow\left|x-3\right|=2x-5\)
Xét \(x\ge3\Rightarrow x-3=2x-5\Rightarrow x-2=0\Rightarrow x=2\) (loại)
Xét \(x< 3\Rightarrow\dfrac{5}{2}\le x< 3\Rightarrow3-x=2x-5\Rightarrow3x-8=0\Rightarrow x=\dfrac{8}{3}\)
Vậy \(x=\dfrac{8}{3}\) là nghiệm của pt...
giải phương trình \( \sqrt{ - { x }^{ 2 } +6x-9 \phantom{\tiny{!}}} + { x }^{ 3 } = 27 \)
\(\sqrt{ { \left( x-3 \right) }^{ 2 } \left( 5-3x \right) \phantom{\tiny{!}}} +2x= \sqrt{ 3x-5+4 \phantom{\tiny{!}}} \)