(x-1)^2018 + (y-2)^2020 = 0
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
(1-2x)^2006+(y-4/5)^1006=(x+y-z)^1006
(x-2)^2020+2018*|y^2-9|=0
cho x+y+z=0 và xy+yz+zx=0.Tính Q=(x-1)^2018+(y-1)^2019+(z-1)^2020
\(x+y+z=0\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz = 0)
\(\Rightarrow\)\(x=y=z=0\)
Vậy \(Q=\left(x-1\right)^{2018}+\left(y-1\right)^{2019}+\left(z-1\right)^{2020}=1\)
Cho các số x, y thoả mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\)
Chứng minh rằng \(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=-1\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)
Tìm giá trị nhỏ nhất
P = 2018/x^2+2x+2017
Q = a^2018+2017/a^2018+2015
A = (x-3y)^2020+(y-2018)^2018
B = (x+y-5)^8+(x-2y)^4+2016
C = \x-2017\+\x-2018\
D = \x-2010\+\x-2011\+\x+2012\
B1) Tìm x,y
(2x-1)^2018+(2y+1)^2020=0
Giải:
\(\left(2x-1\right)^{2018}+\left(2y+1\right)^{2020}=0\)
Vì:
\(\left\{{}\begin{matrix}\left(2x-1\right)^{2018}\ge0;\forall x\\\left(2y+1\right)^{2020}\ge0;\forall y\end{matrix}\right.\) (Lũy thừa số chẵn)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}2x-1=0\\2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
mọi người ơi giúp mình nhanh được không ạ ;-; ( x - 2 )2020 + ( y + 5 )2018 = 0
Ta có: \(\left(x-2\right)^{2020}\ge0\forall x\)
\(\left(y+5\right)^{2018}\ge0\forall y\)
Do đó: \(\left(x-2\right)^{2020}+\left(y+5\right)^{2018}\ge0\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(2;-5)
tìm x,y biết
a)x^20=x^10 b)(x-2)^2018+(y-1)2020=0
ai giải giúp mình vs ạ!!!!
a) ta có \(x^{20}=x^{10}< =>x^{20}-x^{10}=0\)
<=> \(x^{10}\left(x^{10}-1\right)=0\)
<=>\(\orbr{\begin{cases}x^{10}=0\\x^{10}=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=+-1\end{cases}}\)
b) ta có \(\left(x-2\right)^{2018}>=0\)
\(\left(y-1\right)^{2020}>=0\)
=> \(\left(x-2\right)^{2018}+\left(y-1\right)^{2020}>=0\)
dấu = xảy ra <=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
ChO \(\left(x-1\right)^{2018}+y+1=0\)
Tính P\(=\frac{x^{2018}.y^{2019}}{\left(2x+y\right)^{2019+2020}}\)