Cho \(\Delta ABC\) vuông tại A có AB = c; AC = b và đường phân giác trong tại đỉnh A là AD = d (D thuộc BC).
Chứng minh rằng: \(\frac{\sqrt{2}}{d}=\frac{1}{b}+\frac{1}{c}\)
Cho \(\Delta ABC\) vuông tại \(A\) \(\left(AB< AC\right)\) có đường cao \(AH\)
\(a\)) Chứng minh \(\Delta HBA\sim\) \(\Delta ABC\)
\(b\)) Trên đoạn thẳng \(AH\) lấy điểm \(D\). Qua \(C\) vẽ đường thẳng vuông góc với \(BD\) cắt tia \(AH\) tại \(E\). Chứng minh \(\widehat{HBD}=\widehat{HEC}\) và \(BH.CH=HD.HE\)
\(c\)) Chứng minh \(\dfrac{EH}{AH}=\dfrac{EA}{AD}\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Bài 1:
1. Cho \(\Delta\)ABC vuông tại A. Có AB bằng \(\frac{1}{2}\)BC. Tính góc C?
2. Cho \(\Delta\)ABC vuông tại A. Có góc B=30 độ. C/m AC=\(\frac{1}{2}\)BC
3. Cho \(\Delta\)ABC. Có trung tuyến BM=CN. C/m \(\Delta\)ABC cân tại A.
4. Cho \(\Delta\)ABC có trung tuyến AM đồng thời là đường phân giác góc A. C/m \(\Delta\)ABC cân tại A.
Giúp mk nhé mai phải nộp rùi!!!
Bài 1:
Gọi M là trung điểm của BC
Vẽ BE là tia phân giác của góc B, E thuộc AC
nối M với E
ta có: BM =CM = 1/2.BC ( tính chất trung điểm)
AB=1/2.BC (gt)
=> BM = CM= AB ( =1/2.BC)
Xét tam giác ABE và tam giác MBE
có: AB = MB (chứng minh trên)
góc ABE = góc MBE (gt)
BE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)
=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)
=> góc BME = 90 độ
\(\Rightarrow BC\perp AM⋮M\)
Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M
có: BM=CM(gt)
EM là cạnh chung
\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)
=> góc EBM = góc ECM ( 2 cạnh tương ứng)
mà góc EBM = góc ABE = 1/2. góc B (gt)
=> góc EBM = góc ABE = góc ECM
Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)
=> góc EBM + góc ABE + góc ECM = 90 độ
=> góc ECM + góc ECM + góc ECM = 90 độ
=> 3.góc ECM = 90 độ
góc ECM = 90 độ : 3
góc ECM = 30 độ
=> góc C = 30 độ
cho \(\Delta\)ABC vuông tại A có AB>AC. Lấy điểm M là một điểm bất kì thuộc cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng ABtại diểm I, cắt đường thẳng AC tại điểm D. C/m \(\Delta\)ABC\(\sim\)\(\Delta\)MDC
giúp mình với ạTT
xét ΔABC và ΔMDC ta có
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{DMC}=90^o\left(gt\right)\)
=>ΔABC ∼ ΔMDC(g.g)
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
cho \(\Delta\)ABC có AB<AC vuông tại B, phân giác AD của góc A cắt BC tại D. từ D kẻ DH vuông góc với AC (H∈AC);và HD và AB kéo dài cắt tai I. Chứng minh rằng:
a) \(\Delta\)ABC = \(\Delta\)AHD
b) AD là trung trực của BH
c) \(\Delta\)DIC cân
d)BH//IC
e) AD\(\perp\)IC
g) BC > AD + AD - 2AB
a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có
AD chung
góc BAD=góc HAD
=>ΔABD=ΔAHD
b; AB=AH
DB=DH
=>AD là trung trực của BH
c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có
DB=DH
góc BDI=góc HDC
=>ΔBDI=ΔHDC
=>DI=DC
=>ΔDIC cân tại D
d: Xét ΔAIC có AB/BI=AH/HC
nên BH//IC
e: AD vuông góc BH
BH//IC
=>AD vuông góc IC
Cho tứ diện ABCD có \(\Delta\)ABC vuông tại A, AB=6 , AC=8. \(\Delta\)BCD có độ dài đường cao kẻ từ đỉnh C bằng 8. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABC). Tính góc giữa mặt phẳng (ABD) và (BCD) .
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD
Cho \(\Delta ABC\) vuông tại A (AB>AC).Vẽ tia phân giác của góc C cắt AB tại D.Trên cạnh BC lấy điểm E sao cho CE=CA
a)Chứng minh:\(\Delta CDA=\Delta CDE\) và \(DE\perp BC\)
b)Qua C vẽ đường thẳng vuông góc với AC.Qua A vẽ đường thẳng song song với CD,hai đường này cắt nhau tại M.Chứng minh: AM=CD
c)Qua B vẽ đường thẳng vuông góc với CD tại N và cắt AC tại K.Chứng minh:AK=BEvà K;E;D thẳng hàng.
(❤Mọi Người Nhớ Giúp Mình Nha❤)
Cho \(\Delta ABC\) có AB = AC. Gọi M là trung điểm của BC, từ M kẻ MH vuông góc AB tại H, MK vuông góc AC tại K.
a, C/minh: \(\Delta BMH=\Delta CMK\)
b, Cminh: HK // BC
Bạn tự vẽ hình nha
a) Vì AB = AC
\(\Rightarrow\) \(\Delta ABC\) cân tại A
\(\Rightarrow\) \(\widehat{B}=\widehat{C}\) (Hai góc kề một đáy)
Xét hai tam giác vuông \(\Delta BMH\) và \(\Delta CMK\) , ta có:
\(\widehat{B}=\widehat{C}\) ( Chứng minh trên)
\(MB=MC\) (M là trung điểm của BC)
\(\Rightarrow\Delta BMH=\Delta CMK\) (cạnh huyền góc nhọn)
b) Tự làm
Cho \(\Delta ABC\) vuông tại A, đường cao AH, Gọi D, E theo thứ tự là hình chiếu trên AB và AC
a) CM: \(\Delta ABC\sim\Delta HBA\)
b) Cho \(HB=4cm;HC=9cm\) Tính \(AB,DE\)
c) CM: \(AD.AB=AE.AC\)
`a)` Xét `\triangle ABC` vuông tại `A` có: `\hat{B}+\hat{C}=90^o`
Xét `\triangle ABH` vuông tại `H` có: `\hat{B}+\hat{A_1}=90^o`
`=>\hat{C}=\hat{A_1}`
Xét `\triangle ABC` và `\triangle HBA` có:
`{:(\hat{C}=\hat{A_1}),(\hat{B}\text{ là góc chung}):}}=>\triangle ABC` $\backsim$ `\triangle HBA` (g-g)
`b)` Ta có: `BC=HB+HC=4+9=13(cm)`
Xét `\triangle ABC` vuông tại `A` có: `AH` là đường cao
`@AH=\sqrt{BH.HC}=6 (cm)`
`@AB=\sqrt{BH.BC}=2\sqrt{13}(cm)`
Ta có: `\hat{DEA}=\hat{ADH}=\hat{AEH}=90^o`
`=>` Tứ giác `AEHD` là hcn `=>DE=AH=6(cm)`
`c)` Xét `\triangle AHB` vuông tại `H` có: `HD \bot AB=>AH^2=AD.AB`
Xét `\triangle AHC` vuông tại `H` có: `HE \bot AC=>AH^2=AE.AC`
`=>AD.AB=AE.AC`