Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
qqqqqqqqqqqq
Xem chi tiết
Phạm Lê Nam Bình
Xem chi tiết
Chu Công Đức
9 tháng 12 2019 lúc 21:37

Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)               

        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)

        \(=1-\frac{1}{2014}=\frac{2013}{2014}\)

\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)

Khách vãng lai đã xóa
Trần Thu Hương
Xem chi tiết
Tín Đinh
Xem chi tiết
Nguyễn Hoàn Long
Xem chi tiết
phạm nghĩa
8 tháng 5 2016 lúc 13:53

Ta có : A = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +...- 2014/3^2014

=> 3A = 1 - 2/3 + 3/3^2 - 4/3^3 +...- 2014/3^2013

=> 4A = 1- 1/3 + 1/3^2 -...- 1/3^2013 - 2014/3^2014

Xét B = 1-1/3+1/3^2 -...- 1/3^2013

=> 3B = 3 - 1 + 1/3 -...- 1/3^2012

=> 4B = 3- 1/3^2013

=> B = (3- 1/3^2013)/4 < 3/4

=> 4A < 3/4 - 2014/3^2014< 3/4

=> A < 3/16 < 3/15 =1/5

Vậy A < 1/5 (đpcm)

Chúc bạn học tốt

Son Goku
Xem chi tiết
Edogawa
8 tháng 4 2017 lúc 22:37

gọi dãy số trên là A

ta có A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)

A<1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

A<1-\(\frac{1}{2014}\)=\(\frac{2013}{2014}\)

Vậy A < \(\frac{2013}{2014}\)

Hải yến 5b
8 tháng 4 2017 lúc 22:30

ko biết

Đào Trọng Luân
Xem chi tiết
ST
12 tháng 5 2017 lúc 9:15

Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...-\frac{2014}{3^{2014}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-....-\frac{2014}{3^{2013}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-...-\frac{2014}{3^{2013}}\right)+\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....-\frac{2014}{3^{2014}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{2013}}-\frac{2014}{3^{2014}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{2013}}\)    (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{2013}}\)

3B = \(3-1+\frac{1}{3}-...-\frac{1}{3^{2012}}\)

3B + B = \(\left(3-1+\frac{1}{3}-...-\frac{1}{3^{2012}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{2013}}\right)\)

4B = \(3-\frac{1}{3^{2013}}\)

=> 4B < 3 => B < \(\frac{3}{4}\)(2)
Từ (1)(2) => 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)<\(\frac{1}{5}\)(dpcm)

Đào Trọng Luân
12 tháng 5 2017 lúc 8:54

Nhanh nha

vipboyss5
Xem chi tiết
Đỗ Phạm Ngọc Phước
Xem chi tiết
Đào Gia Khanh
14 tháng 5 2015 lúc 8:04

Đây là bài chứng minh chứ ko phải tính đúng ko?