Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 22:42

ĐKXĐ: \(x>0\)

\(x^{log_25}=t\Rightarrow25^{log_2x}=\left(5^{log_2x}\right)^2=\left(x^{log_25}\right)^2=t^2\)

\(x_1x_2=4\Rightarrow t_1t_2=\left(x_1x_2\right)^{log_25}=4^{log_25}=25\)

\(\left(m+1\right)t^2+\left(m-2\right)t-2m+1=0\) (1)

Pt có 2 nghiệm pb \(\Rightarrow\) (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)\left(-2m+1\right)>0\\t_1+t_2=\dfrac{2-m}{m+1}>0\\t_1t_2=\dfrac{-2m+1}{m+1}>0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\-1< m< \dfrac{1}{2}\end{matrix}\right.\)

Ủa làm đến đây mới thấy kì kì, chỉ riêng hệ điều kiện này đã ko tồn tại m nguyên rồi, chưa cần điều kiện \(x_1x_2=4\)

Nguyễn Việt Lâm
30 tháng 8 2021 lúc 23:22

\(t=1\) pt có nghiệm kép bạn ơi, ko phải 2 nghiệm pb như đề yêu cầu đâu

Phạm Tuân
Xem chi tiết
Kinder
Xem chi tiết
Đặng Nguyễn Trãi
9 tháng 7 2021 lúc 9:53

 

Điều kiện xác định x∈Rx∈R.

Đặt t=√x2+1 (t≥1t≥1)

Phương trình trở thành t2−1−4t−m+1=0

⇔t2−4t=m

⇔t2−4t=m. (1)

Để phương trình có 44 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt lớn hơn 11.

Xét hàm số f(t)=t2−4t có đồ thị là parabol có hoành độ đỉnh x=2∈(1;+∞) nên ta có bảng biến thiên:

Dựa BBT ta thấy để (1) có hai nghiệm phân biệt lớn hơn 11 thì −4<m<−3

Vậy không có giá trị nguyên của mm thỏa mãn yêu cầu bài toán.

nguyen hong thai
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2021 lúc 21:44

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)

nguyen hong thai
Xem chi tiết
Ni Rika
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 1 2022 lúc 8:33

\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)

\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)

\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)

\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)

\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)

\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)

\(\Rightarrow m=-3\) (thỏa mãn)

Rhider
30 tháng 1 2022 lúc 8:32

Pt trên có a=1, b=5, c=-3m+2

\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0  <=>m> 17/12

Theo hệ thức Viet, ta có:

\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)

=> 12m = -7      <=>m=-7/12 (thỏa đkxđ)

Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10

Nguyễn Tùng Anh
Xem chi tiết
Lizy
Xem chi tiết

\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)\)

\(=4m^2-8m+12\)

\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\forall m\)

=>Phương trình (1) luôn có hai nghiệm phân biệt

Áp dụng Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

\(9-x_1^2-x_2^2>=0\)

=>\(9-\left(x_1^2+x_2^2\right)>=0\)

=>\(9-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]>=0\)

=>\(9-\left[\left(2m\right)^2-2\left(2m-3\right)\right]>=0\)

=>\(9-4m^2+4m-6>=0\)

=>\(-4m^2+4m+3>=0\)

=>\(4m^2-4m-3< =0\)

=>\(4m^2-6m+2m-3< =0\)

=>(2m-3)(2m+1)<=0

=>\(-\dfrac{1}{2}< =m< =\dfrac{3}{2}\)

mà m là số nguyên nhỏ nhất

nên m=0

hilo
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 22:07

Δ=(2m-2)^2-4(m-3)

=4m^2-8m+4-4m+12

=4m^2-12m+16

=4m^2-12m+9+7=(2m-3)^2+7>=7>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(\left(\dfrac{1}{x1}-\dfrac{1}{x2}\right)^2=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}-\dfrac{2}{x_1x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{\left(x_1\cdot x_2\right)^2}-\dfrac{2}{x_1\cdot x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(2m-2\right)^2-2\left(m-3\right)}{\left(-m+3\right)^2}-\dfrac{2}{-m+3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-8m+4-2m+6}{\left(m-3\right)^2}+\dfrac{2}{m-3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-10m+10+2m-6}{\left(m-3\right)^2}=\dfrac{\sqrt{11}}{2}\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(4m^2-8m+4\right)\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(2m-2\right)^2\)

=>\(\Leftrightarrow\left(\dfrac{m-3}{2m-2}\right)^2=\dfrac{2}{\sqrt{11}}\)

=>\(\left[{}\begin{matrix}\dfrac{m-3}{2m-2}=\sqrt{\dfrac{2}{\sqrt{11}}}\\\dfrac{m-3}{2m-2}=-\sqrt{\dfrac{2}{\sqrt{11}}}\end{matrix}\right.\)

mà m nguyên

nên \(m\in\varnothing\)