Tính:
D=\(\frac{3tan36^0}{cotg25^0}-sin^255^0-sin^235^0-tan15^0.tan75^0\)
* Tính ( không dùng máy tính)
\(\sin^235^0+tan22^0+sin^255^0-cotg13^0:tan77^0-cotg68^0\)
* Cho góc nhọn a, sina=\(\dfrac{2}{3}\)biết. Không tính số đo góc, hãy tính cosa, tân, cotga
Bài 2:
\(\cos\alpha=\sqrt{1-\dfrac{4}{9}}=\dfrac{\sqrt{5}}{3}\)
\(\tan\alpha=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\cot\alpha=\dfrac{\sqrt{5}}{2}\)
Tính giá trị biểu thức:
a) \(\sin^230^0-\sin^240^0-\sin^250^0+\sin^260^0\)
b) \(\cos^225^0-\cos^235^0+\cos^245^0-\cos^255^0+\cos^265^0\)
Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)
a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)
b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)
trắc nghiệm
1.cho tam giác ABC vuông tại A, AC=2cm, sinB=\(\dfrac{1}{2}\). độ dài cạnh huyền BC là...
2.giá trị của biểu thức M=sin\(^235^0+sin^255^0+cot53^0.cot37^0\) bằng...
3.các tia nắng mặt trời tạo với mặt đất 1 góc bằng 60\(^0\) và bóng của 1 tháp trên mặt đất dài 68m. chiều cao của tháp (làm tròn đến m) là...
4.tam giác ABC vuông tại A đường cao AH biết AB:AC=3:4 và BC=5. độ dài của đoạn thẳng AH bằng...
5.tam giác ABC vuông tại A đường cao AH biết AC=6cm và HB=9cm . diện tích tam giác ABC bằng...
Tính :
a) \(\cos225^0;\sin240^0;\cot\left(-15^0\right);\tan75^0\)
b) \(\sin\dfrac{7\pi}{15};\cos\left(-\dfrac{\pi}{12}\right);\tan\dfrac{13\pi}{12}\)
a)
\(\cos225^0=\cos\left(180^0+45^0\right)=-\cos45^0=-\dfrac{\sqrt{2}}{2}\)
\(\sin240^0=\sin\left(180^0+60^0\right)=-\sin60^0=-\dfrac{\sqrt{3}}{2}\)
\(\cos\left(-15^0\right)=-\cot15^0=-\tan75^0=-\tan\left(30^0+45^0\right)\)
\(=\dfrac{-\tan30^0-\tan45^0}{1-\tan30^0\tan45^0}=\dfrac{-\dfrac{1}{\sqrt{3}}-1}{1-\dfrac{1}{\sqrt{3}}}=-\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=-\dfrac{\left(\sqrt{3}+1\right)^2}{2}=-2-\sqrt{3}\)
\(\tan75^0=\cot15^0=2+\sqrt{3}\)
b)
\(\sin\dfrac{7\pi}{12}=\sin\left(\dfrac{\pi}{3}+\dfrac{\pi}{4}\right)=\sin\dfrac{\pi}{3}\cos\dfrac{\pi}{4}+\cos\dfrac{\pi}{3}\sin\dfrac{\pi}{4}\)
\(=\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)
\(\cos\left(-\dfrac{\pi}{12}\right)=\cos\left(\dfrac{\pi}{4}-\dfrac{\pi}{3}\right)=\cos\dfrac{\pi}{4}\cos\dfrac{\pi}{3}+\sin\dfrac{\pi}{3}\sin\dfrac{\pi}{4}\)
\(=\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=0,9659\dfrac{\sqrt{2}}{2}\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}\right)=0,9659\)
\(\tan\dfrac{13\pi}{12}=\tan\left(\pi+\dfrac{\pi}{12}\right)=\tan\dfrac{\pi}{12}=\tan\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)\)
\(=\dfrac{\tan\dfrac{\pi}{3}-\tan\dfrac{\pi}{4}}{1+\tan\dfrac{\pi}{3}\tan\dfrac{\pi}{4}}=\dfrac{\sqrt{3}-1}{1+\sqrt{3}}=2-\sqrt{3}\)
Tính giá trị của biểu thức
A=\(\sin^210^0+\sin^220^0+\sin^230^0+...+\sin^280^0+2013\)
B=\(\cos^21^0+\cos^22^0+...+\cos^289^0\)
C=\(\frac{\sin33^0}{\cos57^0}+\frac{\tan32^0}{\cot58^0}-2\left(\sin20^0.\cos70^0+\cos20^0.\sin70^0\right)\)
D=\(4\cos^2a-6\sin^2a\) biết \(\sin a=\frac{1}{5}\)
Tính giá trị của biểu thức:
a,A= \(sin^215^0+sin^240^0+sin^260^0+sin^275^0+sin^250^0+sin^230^0\)
b, B=\(tan5^0tan10^0....tan85^0\)
c, C=\(cos^215^0-cos^225^0+cos^235^0-cos^245^0-cos^265^0+cos^275^0\)
LÀM ƠN GIÚP MÌNH NHÉ, MAI NỘP RÙI. PLEASE!!!!!!
Có
A=\(\left(sin^215^o+sin^275^o\right)+\left(sin^240^o+sin^250^o\right)+\left(sin^260^o+sin^230^o\right)\)
\(=\left(sin^215^o+cos^215^o\right)+...\)
\(=1\cdot3=3\)
Câu c tương tự mà mk nghĩ đề sai dấu - trước cos^245độ
Nói chung nếu: a+b=90 độ
thì: \(sin^2a+sin^2b=1\)
b) thì áp dụng nếu a+b=90 độ:
\(tana=cotb\) và ngược lại
Mà \(tana\cdot cota=1\)
Nói chung là công thức......
Tính giá trị của biểu thức:
\(A=\frac{3\cos67^0}{2\tan23^0}-\frac{\cos^236^0+\cos^254^0-\cos^217^0-\cos^273^0}{\sin^224^0+\sin^266^0+\sin^215^0+\sin^275^0}\)
bài 1 tính giá trị biểu thức sau
A = sin 10 + sin 40 - cos 55 - cos 80
B = cos 15 + cos 35 - sin 55 - sin 75
C = \(\frac{tan27^0.tan63^0}{cot63^0.cot27^0}\)
D = \(\frac{cot20^0cot45^0cot70^0}{tan20^0tan45^0tan70^0}\)
Cho \(0< x< 90^0\) CMR:
a) \(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=2cotx\)
b) \(\frac{1}{tanx+1}+\frac{1}{cotx+1}=1\)
c) \(sin^6x+cos^6x+sin^4x.cos^4x+5sin^2x.cos^2x=2\)
d) \(sin^21^0+sin^22^0+sin^23^0+...+sin^289^0=?\)
ai giúp mị với
a) \(\sqrt{\frac{1+\cos x}{1-\cos x}}-\sqrt{\frac{1-\cos x}{1+\cos x}}=\frac{\sqrt{\left(1+\cos x\right)^2}-\sqrt{\left(1-\cos x\right)^2}}{\sqrt{\left(1-\cos x\right)\left(1+\cos x\right)}}\)
\(=\frac{1+\cos x-1+\cos x}{\sqrt{1-\cos^2x}}=\frac{2\cos x}{\sqrt{\sin^2x}}=\frac{2\cos x}{\sin x}=2\cot x\)
b) \(\frac{1}{\tan x+1}+\frac{1}{\cot x+1}=\frac{\tan x+1+\cot x+1}{\left(\tan x+1\right)\left(\cot x+1\right)}\)
\(=\frac{\tan x+\cot x+2}{\tan x+\cot x+\tan x.\cot x+1}=\frac{\tan x+\cot x+2}{\tan x+\cot x+2}=1\)
c) (ko bt có sai đề ko, làm mãi ko ra)
d) \(\sin^21^0+\sin^22^0+\sin^23^0+...+\sin^289^0\)
\(=\left(\sin^21^0+\sin^289^0\right)+\left(\sin^22^0+\sin^288^0\right)+...+\sin^245^0\)
\(=\left[\left(\sin^21^0-\cos^289^0\right)+\left(\sin^289^0+\cos^289^0\right)\right]+\)
\(\left[\left(\sin^22^0-\cos^288^0\right)+\left(\sin^288^0+\cos^288^0\right)\right]+...+\sin^245^0\)
\(=\left(0+1\right)+\left(0+1\right)+...+\frac{\sqrt{2}}{2}=\frac{44+\sqrt{2}}{2}\)