Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Ngọc Trâm
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2019 lúc 6:32

\(\Leftrightarrow\left(2x^2+2y\right)^2-y^2-4y-15=0\)

\(\Leftrightarrow\left(2x^2+2y\right)^2-\left(y+2\right)^2=11\)

\(\Leftrightarrow\left(2x^2+3y+2\right)\left(2x^2+y-2\right)=11\)

\(\Leftrightarrow...\)

Sherry
Xem chi tiết
Vũ Tiến Anh
9 tháng 10 2017 lúc 12:20

(2x^2 + 2y)^2 -( y + 2)^ 2 -11  = 0

(2x^2 + 2y - y-2)(2x^2+2y+ y+2) =11

( 2x^2 + y-2)(2x^2 +3y +2) =11

Mỗi thừa số vế trái là ước nguyên của 11 . Lập bảng chọn giá trị x, y nguyên bạn nhé

Minazuki Tezu
Xem chi tiết
HT.Phong (9A5)
30 tháng 7 2023 lúc 5:57

1) \(4x^5y^2-8x^4y^2+4x^3y^2\)

\(=4x^3y^2\left(x^2-2x+1\right)\)

\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=4x^3y^2\left(x-1\right)^2\)

2) \(5x^4y^2-10x^3y^2+5x^2y^2\)

\(=5x^2y^2\left(x^2-2x+1\right)\)

\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=5x^2y^2\left(x-1\right)^2\)

3) \(12x^2-12xy+3y^2\)

\(=3\left(4x^2-4xy+y^2\right)\)

\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=3\left(2x-y\right)^2\)

4) \(8x^3-8x^2y+2xy^2\)

\(=2x\left(4x^2-4xy+y^2\right)\)

\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=2x\left(2x-y\right)^2\)

5) \(20x^4y^2-20x^3y^3+5x^2y^4\)

\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)

\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=5x^2y^2\left(2x-y\right)^2\)

Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 23:27

1: 4x^5y^2-8x^4y^2+4x^3y^2

=4x^3y^2(x^2-2x+1)

=4x^3y^2(x-1)^2

2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)

3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)

4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)

5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)

NguyễnVănĐan
Xem chi tiết
Đào Trần Tuấn Anh
Xem chi tiết
Hồ Minh Thành
Xem chi tiết
Hoàng thị Hiền
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
16 tháng 10 2017 lúc 20:03

Câu a :

\(\left(3x^2-3y^2\right)+\left(4x-4y\right)=0\)

\(\Leftrightarrow3\left(x^2-y^2\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[3\left(x+y\right)+4\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\3\left(x+y\right)+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=-\dfrac{4}{3}\Rightarrow x=-\dfrac{4}{3}-y\end{matrix}\right.\)

Vậy \(x=y\) hoặc \(x=-\dfrac{4}{3}-y\)

Câu b :

\(\left(12x^2-3xy\right)+\left(8x-2y\right)=0\)

\(\Leftrightarrow3x\left(4x-y\right)+2\left(4x-y\right)=0\)

\(\Leftrightarrow\left(4x-y\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-y=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{y}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x=\dfrac{y}{4}\) hoặc \(x=-\dfrac{2}{3}\)

Lê Tài Bảo Châu
Xem chi tiết
Tran Le Khanh Linh
2 tháng 8 2020 lúc 18:32

1) ta tìm cách loại bỏ 18y3, vì y=0 không là nghiệm của phương trình (2) tương đương 72x2y2+108xy=18y3

thế 18y3 từ phương trình (1) vào ta được

8x3y3-72x2y2-108xy+27=0

<=> \(xy=\frac{-3}{2}\)hoặc \(xy=\frac{21-9\sqrt{5}}{4}\)hoặc \(xy=\frac{21+9\sqrt{5}}{4}\)

thay vào (1) ta tìm được x,y

=> y=0 (loại) hoặc \(y=\sqrt[3]{\frac{8\left(xy\right)^3+27}{18}}=\pm\frac{3}{2}\left(\sqrt{5}-3\right)\Rightarrow x=\frac{1}{4}\left(3\pm\sqrt{5}\right)\)

vậy hệ đã cho có nghiệm

\(\left(x;y\right)=\left(\frac{1}{4}\left(3-\sqrt{5}\right);-\frac{3}{2}\left(\sqrt{5}-3\right)\right);\left(\frac{1}{4}\left(3+\sqrt{5}\right);\frac{-3}{2}\left(3+\sqrt{5}\right)\right)\)

Khách vãng lai đã xóa
Lê Nguyễn Trường Chinh
Xem chi tiết
Nguyễn Hoàng Anh Phong
22 tháng 11 2018 lúc 17:19

x4 + 4x2y + 3y2 +6y - 16 = 0

(x4 +4x2y + 4y2) - (y2 -6y + 9) - 7 = 0

(x2 + 2y)2 - (y-3)2 = 7

(x2 +y - 3).(x2 +3y - 3) = 7

....

bn tự lập bảng nha