Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
Trần Minh Hoàng
8 tháng 1 2021 lúc 11:02

Đặt \(\dfrac{x}{z}=a;\dfrac{y}{z}=b\).

Theo gt ta có \(a+b\le1\).

BĐT cần chứng minh tương đương:

\(a^2+b^2+\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{21}{2}\).

Theo bđt AM - GM: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2;a^2+\dfrac{1}{16}a^2\ge\dfrac{1}{2};b^2+\dfrac{1}{16}b^2\ge\dfrac{1}{2};\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge\dfrac{15}{2}\).

Cộng vế với vế của các bđt trên lại ta có đpcm.

 

Nguyễn Khánh Linh
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 23:19

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

Akai Haruma
21 tháng 5 2021 lúc 23:22

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

Akai Haruma
21 tháng 5 2021 lúc 23:23

Bài 3:

\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)

Do đó:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

Ta có đpcm.

Quang Đẹp Trai
Xem chi tiết
Akai Haruma
10 tháng 8 2023 lúc 23:23

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$

$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$

$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$

$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$

$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$

$\Rightarrow \text{VT}\geq \frac{27}{4}$

Dấu "=" xảy ra khi $x=y=z>0$

Vũ Tuệ Lâm
10 tháng 8 2023 lúc 23:38

Áp dụng BĐT Bunhiacopxky:

VT(12+12+12)≥(1+��+�+1+��+�+1+��+�)2

⇔3VT≥(3+��+�+��+�+��+�)2

=[3+�2��+��+�2��+��+�2��+��]2

≥[3+(�+�+�)22(��+��+��)]2

≥[3+3(��+��+��)2(��+��+��)]2=814

⇒VT≥274

Dấu "=" xảy ra khi �=�=�>0

Cris devil gamer
Xem chi tiết
:vvv
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 14:32

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

Nguyễn Thiều Công Thành
Xem chi tiết
dinh huong
Xem chi tiết
Nguyễn Hải Minh
Xem chi tiết
Tạ Duy Phương
Xem chi tiết
Trần Đức Thắng
11 tháng 1 2016 lúc 17:30

Áp dụng BĐT cô si với ba số không âm ta có :

\(\frac{1}{\left(x+1\right)^2}+\frac{x+1}{8}+\frac{x+1}{8}\ge3\sqrt[3]{\frac{1}{64}}=\frac{3}{4}\)

=> \(\frac{1}{\left(x+1\right)^2}\ge\frac{3}{4}-\frac{x+1}{4}\) (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " \(\frac{1}{\left(y+1\right)^2}\ge\frac{3}{4}-\frac{y+1}{4}\)(2) ; \(\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}-\frac{z+1}{4}\) (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\cdot3-\frac{x+y+z+3}{4}\)\(\ge\frac{9}{4}-\frac{3\sqrt[3]{xyz}+3}{4}=\frac{9}{4}-\frac{6}{4}=\frac{3}{4}\)

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1