CMR:2n+1 và 2n+3(n\(\in\)N) là 2 số nguyên tố cùng nhau
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
CMR với mọi só tự nhiên n thì n^4+3.n^2+1 và n^3+2n là 2 số nguyên tố cùng nhau
Cho n thuộc N,CMR : 2n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau .
Giải:
Gọi \(d=UCLN\left(2n+1;3n+1\right)\)
Ta có: \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)
\(3n+1⋮d\Rightarrow2\left(3n+1\right)⋮d\Rightarrow6n+2⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(2n+1;3n+1\right)=1\)
\(\Rightarrow2n+1\) và 3n + 1 là 2 số nguyên tố cùng nhau
Vậy...
CMR 2n+1 và 3n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Mik ko bết làm bạn vào gợi ý dưới đây:vào câu hỏi tương tự
^_^&>_<
Gọi 2 số tự nhiên liên tiếp là a;a+1 ( a thuộc N )
Gọi ƯCLN của a và a+1 là d ( d thuộc N sao )
=> a và a+1 đều chia hết cho d
=> a+1 -a chia hết cho d hay 1 chia hết cho d
=> d=1 ( vì d thuộc N sao )
=> ƯCLN của a và a+1 là 1
=> a và a+1 là 2 số nguyên tố cùng nhau
=> ĐPCM
Chứng tỏ :
2n + 1 và 2n + 3 ( n \(\in\)N ) là 2 số nguyên tố cùng nhau .
Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.
Thật vậy, nếu \(d\inƯC\left(2n+1,2n+3\right)\) suy ra:
\(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\) => \(\left[\left(2n+3\right)-\left(2n+1\right)\right]⋮d\)
=> \(2⋮d\) => d = 1 hoặc d =2
Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì \(2n+1⋮2\) (vô lý vì 2n +1 là số lẻ).
=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.
Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.
Thật vậy, nếu d ∈ ƯC 2n + 1,2n + 3 suy ra:
2n + 1⋮d
2n + 3⋮d
=> 2n + 3 − 2n + 1 ⋮d
=> 2⋮d => d = 1 hoặc d =2
Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì 2n + 1⋮2 (vô lý vì 2n +1 là số lẻ).
=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.
chúc bn hok tốt @_@
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
cmr với mọi x thuộc N* các cặp số sau là các cặp số nguyên tố cùng nhau
n và n+1
2n và 2n+2