Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Phong
Xem chi tiết
Nguyễn Thị Mỹ Duyên
Xem chi tiết
Hằng Phạm
5 tháng 1 2016 lúc 19:19

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Tạ Nguyễn Minh Phương
Xem chi tiết
Tạ Nguyễn Minh Phương
27 tháng 12 2017 lúc 18:19

Giúp mình nha !

GẤP LẮM!

Chii Chii Nguyễn
Xem chi tiết
Nguyễn Huy Tú
24 tháng 12 2016 lúc 18:32

Giải:

Gọi \(d=UCLN\left(2n+1;3n+1\right)\)

Ta có: \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)

\(3n+1⋮d\Rightarrow2\left(3n+1\right)⋮d\Rightarrow6n+2⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(2n+1;3n+1\right)=1\)

\(\Rightarrow2n+1\) và 3n + 1 là 2 số nguyên tố cùng nhau

Vậy...

Nguyễn Trung Dũng
Xem chi tiết
Thắng  Hoàng
11 tháng 11 2017 lúc 20:27

Mik ko bết làm bạn vào gợi ý dưới đây:vào câu hỏi tương tự 

^_^&>_<

Passwork là tên đăng nhậ...
11 tháng 11 2017 lúc 20:29

số 2;3

Nguyễn Anh Quân
11 tháng 11 2017 lúc 20:30

Gọi 2 số tự nhiên liên tiếp là a;a+1 ( a thuộc N )

Gọi ƯCLN của a và a+1 là d ( d thuộc N sao )

=> a và a+1 đều chia hết cho d

=> a+1 -a chia hết cho d hay 1 chia hết cho d

=> d=1 ( vì d thuộc N sao )

=> ƯCLN của a và a+1 là 1 

=> a và a+1 là 2 số nguyên tố cùng nhau 

=> ĐPCM

 Quỳnh Uyên
Xem chi tiết
GV
1 tháng 11 2017 lúc 8:34

Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.

Thật vậy, nếu \(d\inƯC\left(2n+1,2n+3\right)\) suy ra:

\(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\) => \(\left[\left(2n+3\right)-\left(2n+1\right)\right]⋮d\)

=> \(2⋮d\) => d = 1 hoặc d =2

Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì \(2n+1⋮2\) (vô lý vì 2n +1 là số lẻ).

=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.

Sky Hoàng Nguyễn Fuck
5 tháng 12 2017 lúc 17:05

Ta chứng minh ƯC của 2 số 2n + 1 và 2n + 3 chỉ có thể là 1.
Thật vậy, nếu d ∈ ƯC 2n + 1,2n + 3 suy ra:
2n + 1⋮d
2n + 3⋮d
=> 2n + 3 − 2n + 1 ⋮d
=> 2⋮d => d = 1 hoặc d =2
Ta lại thấy d không thể bằng 2 vì nếu d = 2 thì 2n + 1⋮2 (vô lý vì 2n +1 là số lẻ).
=> d = 1. Vậy 2 số 2n + 1 và 2n + 3 là nguyên tố cùng nhau.

chúc bn hok tốt @_@

Nguyễn Hà Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2023 lúc 13:41

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

nguyenthiminhhang
Xem chi tiết