Tìm x để \(P\in Z\) (lưu ý k phải tìm \(x\in Z\) để \(P\in Z\))
\(P=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Tìm x \(\in\)Z để \(\frac{2\sqrt{x}}{x-\sqrt{x}+1}\in Z\)
Xin lỗi
Mình k bt
Mk k bt
Mk k bt
Xin lỗi xin lỗi
Xin lỗi
Mình k bt
Mk k bt
Mk k bt
Xin lỗi xin lỗi
\(Q=\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}\)
a. Rút gọn Q.
b. Tìm x để Q >\(\frac{1}{2}\)
c. Tìm x \(\in\)Z để Q \(\in\)Z
Cho C = \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}.\)
a) rút gọn C
b) tìm x\(\in\)Z để C \(\in\)Z
c) tìm x để C > \(\frac{1}{2}\)
\(P=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
b) tìm \(x\in Z\) để \(P\in Z\)
\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}\right]\) \(:\frac{\sqrt{x}+1-2}{x-1}\)
\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right]:\frac{\sqrt{x}-1}{x-1}\)
\(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right]:\frac{1}{\sqrt{x}+1}\)
\(P=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{1}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(\Leftrightarrow P=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}\)
\(\Leftrightarrow P=1-\frac{2}{\sqrt{x}+1}\)
để \(P\in Z\) \(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{\pm1;\pm2\right\}\)
+) \(\sqrt{x}+1=-1\Leftrightarrow\sqrt{x}=-2\) ( vô lí )
+) \(\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
+) \(\sqrt{x}+1=-2\Leftrightarrow\sqrt{x}=-3\) ( vô lí )
+) \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\)
vậy để \(P\in Z\) thì \(x\in\left\{1;0\right\}\)
Tìm x \(\in\)Z để A =\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)\(\in\)Z
Ta có :
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
để A nguyên thì \(\frac{4}{\sqrt{x}-3}\)nguyên
\(\Rightarrow\)4 \(⋮\)\(\sqrt{x}-3\)
\(\Rightarrow\)\(\sqrt{x}-3\)\(\in\)Ư ( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -7 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -4 |
x | 16 | 4 | 25 | 1 | 49 | \(\varnothing\) |
Vậy ...
Cho biểu thức : \(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
a, Rút gọn A
b, Tìm x để A < 1
c, Tìm \(x\in Z\) để \(A\in Z\)
\(ĐKXĐ:\)
\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)
Vậy...................................................
\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)
\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(=\frac{3}{\left(2+\sqrt{x}\right)}\)
Đế A<1 \(\Rightarrow\frac{3}{2+\sqrt{x}}< 1\)
\(\Leftrightarrow\frac{3}{2+\sqrt{x}}-1< 0\)
\(\Leftrightarrow\frac{3-2-\sqrt{x}}{2+\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{1-\sqrt{x}}{2+\sqrt{x}}< 0\)
Vì \(2+\sqrt{x}>0\forall x\in R\)
\(\Rightarrow1-\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)
Kết hợp ĐKXĐ \(\Rightarrow\hept{\begin{cases}x>1\\x\ne4\\x\ne9\end{cases}}\)
Tìm \(x\in Z\)để
\(A=\frac{2012\sqrt{x}+5}{2006\sqrt{x}+1x}\in Z\)
Q = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)với đk x \(\ge0,x\ne9,x\ne4\)
1. rút gọn Q
2. tìm x để Q < 1
3. tìm x \(\in\)Z để Q\(\in\)Z
tìm \(x\in Z\) để A=\(\frac{\sqrt{x+1}}{\sqrt{x-2}}\)\(\in Z\)