\(x^2-2x-15=0\)
1) 2x^3 - 8x = 0 2)2x (x - 15) - 4 (x - 15) = 0
1) \(2x^3-8x=0\)
\(\Leftrightarrow2x\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy \(x\in\left\{0;\pm2\right\}\)
2) \(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
Vậy \(x\in\left\{2;15\right\}\)
1
\(2x^3-8x=0\)
\(2x\left(x^2-4\right)=0\)
\(\orbr{\begin{cases}2x=0\\x^2-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
2
\(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\left(2x-4\right)\left(x-15\right)=0\)
\(\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\)
\(\orbr{\begin{cases}2x=4\\x=0+15\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
1) 2x3 - 8x = 0
<=> 2x( x2 - 4 ) = 0
<=> 2x( x - 2 )( x + 2 ) = 0
<=> 2x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0
<=> x = 0 hoặc x = ±2
2) 2x( x - 15 ) - 4( x - 15 ) = 0
<=> ( x - 15 )( 2x - 4 ) = 0
<=> x - 15 = 0 hoặc 2x - 4 = 0
<=> x = 15 hoặc x = 2
tìm x biết
a x^2 (2x+15)+4(2x+15)=0
b 5x(x-2)-3(x-2)=0
c 2(x+3)-x^2-3x=0
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3
bài 19: tìm x
c) ( 34 - 2x ) . ( 2x - 6 ) = 0
d) ( 2019 - x ) . ( 3x - 12 ) 0
e) 57 . ( 9x - 27 ) = 0
f) 25 + ( 15 - x ) = 30
g) 43 - ( 24 - x ) = 20
h) 2 . ( x - 5 ) - 17 = 25
i) 3 . ( x + 7 ) - 15 = 27
j) 15 + 4 . ( x - 2 ) = 95
k) 20 - ( x + 14 ) = 5
l) 14 + 3 . ( 5 - x ) = 27
nhanh nha, mik tick cho, ccau trình bày dễ hiểu, ko cần ''hoặc''
`@` `\text {Ans}`
`\downarrow`
`c)`
`( 34 - 2x ) . ( 2x - 6 ) = 0`
`=>`\(\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=34\div2\\x=6\div2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
Vậy, `x \in {17; 3}`
`d)`
`( 2019 - x ) . ( 3x - 12 ) =0` `?`
`=>`\(\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019-0\\3x=12\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=12\div3\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)
Vậy, `x \in {2019; 4}`
`e) `
`57 . ( 9x - 27 ) = 0`
`=>`\(9x-27=0\div57\)
`=> 9x - 27 = 0`
`=> 9x = 27`
`=> x = 27 \div 9`
`=> x = 3`
Vậy, `x = 3`
`f)`
`25 + ( 15 - x ) = 30`
`=> 15 - x = 30 - 25`
`=> 15 - x = 5`
`=> x = 15 -5 `
`=> x = 10`
Vậy, `x = 10`
`g) `
`43 - ( 24 - x ) = 20`
`=> 24 - x = 43 - 20`
`=> 24 - x = 23`
`=> x = 24 - 23`
`=> x = 1`
Vậy, `x = 1`
`h) `
`2 . ( x - 5 ) - 17 = 25`
`=> 2 ( x - 5) = 25+17`
`=> 2 ( x - 5) = 42`
`=> x - 5 = 42 \div 2`
`=> x - 5 = 21`
`=> x = 21 + 5`
`=> x = 26`
Vậy, `x = 26`
`i)`
`3 . ( x + 7 ) - 15 = 27`
`=> 3(x + 7) = 27 + 15`
`=> 3(x + 7) = 42`
`=> x +7 = 42 \div 3`
`=> x + 7 = 14`
`=> x = 14 - 7`
`=> x = 7`
Vậy, `x = 7`
`j)`
`15 + 4 . ( x - 2 ) = 95`
`=> 4(x - 2) = 95 - 15`
`=> 4(x - 2) = 80`
`=> x - 2 = 80 \div 4`
`=> x - 2 = 20`
`=> x = 20 + 2`
`=> x = 22`
Vậy, `x = 22`
`k)`
`20 - ( x + 14 ) = 5`
`=> x + 14 = 20 - 5`
`=> x + 14 = 15`
`=> x = 15 - 14`
`=> x = 1`
Vậy, `x = 1`
`l) `
`14 + 3 . ( 5 - x ) = 27`
`=> 3(5 - x) = 27 - 14`
`=> 3(5 - x) = 13`
`=> 5 - x = 13 \div 3`
`=> 5 - x = 13/3`
`=> x = 5- 13/3`
`=> x = 2/3`
Vậy, `x = 2/3.`
`@` `\text {Kaizuu lv uuu}`
tìm x,biết:
a, 3(x-3)-6x=0
b, 2x(x-15)+2x
c, 2(x-3)+3x=9
d, x(x-11)+2(x-11)=0
e,x(x+2)+8=x^2
f, 8(x+1)+2x=-2
g,12-3(x+2)=0
a: \(3\left(x-3\right)-6x=0\)
=>\(3x-9-6x=0\)
=>-3x-9=0
=>3x+9=0
=>3x=-9
=>\(x=-\dfrac{9}{3}=-3\)
b: Đề thiếu vế phải rồi bạn
c: \(2\left(x-3\right)+3x=9\)
=>2x-6+3x=9
=>5x-6=9
=>5x=6+9=15
=>x=15/5=3
d: \(x\left(x-11\right)+2\left(x-11\right)=0\)
=>\(\left(x-11\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)
e: \(x\left(x+2\right)+8=x^2\)
=>\(x^2+2x+8=x^2\)
=>2x+8=0
=>2x=-8
=>x=-8/2=-4
f: \(8\left(x+1\right)+2x=-2\)
=>\(8x+8+2x=-2\)
=>10x=-2-8=-10
=>\(x=-\dfrac{10}{10}=-1\)
g: 12-3(x+2)=0
=>3(x+2)=12
=>x+2=12/3=4
=>x=4-2=2
Giải phương trình
\((x^2+2x)^2\) - 14\((x^2+2x) -15=0\)
\(\Leftrightarrow\left(x^2+2x-15\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-3\right)\left(x+1\right)^2=0\)
hay \(x\in\left\{-5;3;-1\right\}\)
1,x=3x2
2,(x+5)(x-3)-(x-30)=0
3,(2x-6)(x+4)+2(2x-6)=0
4,(2x-5)(x+9)+6x-15=0
3,(2x-5)(x+6)+8x-20=0
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
Tim x ,biet :
(x-78):70=0
(x-2)x (2x-10)=0
2x(x-5)=0
2x(x-6) =0
(x-15)x15=0
Bài 3: Tìm x
1) ( x + 5)2 = (x + 3)( x – 7)
2) (x + 2)(x2 -2x + 4) = 15 + x(x2 +2)
3) x2 + 6x = -9
4) x3 - 9x2 = 27 – 27x
5) (2x + 1)2 - 4(x + 2)2 = 9
6) –x2 - 2x +15 = 0
\(1,\Leftrightarrow x^2+10x+25=x^2-4x-21\\ \Leftrightarrow14x=-46\\ \Leftrightarrow x=-\dfrac{23}{7}\\ 2,\Leftrightarrow x^3+8=15+x^3+2x\\ \Leftrightarrow2x=-7\Leftrightarrow x=-\dfrac{7}{2}\\ 3,\Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x=-3\\ 4,\Leftrightarrow x^3-9x^2+27x-27=0\\ \Leftrightarrow\left(x-3\right)^3=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\\ 5,\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\\ \Leftrightarrow-12x=24\Leftrightarrow x=-2\\ 6,\Leftrightarrow x^2-3x+5x-15=0\\ \Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
B1: Tìm x:
1/ \(\dfrac{x+3}{15}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{15}\)
2/ (2x - 5) = (x - 3) = 0
3/ (3x - 4) - (2x - 5) = 3
4/ (2x + 1) x (\(\dfrac{1}{2}\)x - 1) = 0
1) PT \(\Leftrightarrow\dfrac{x+3}{15}=\dfrac{4}{15}\) \(\Rightarrow x+3=4\) \(\Rightarrow x=1\)
Vậy ...
2) Mạnh dạn đoán đề là \(\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy ...
3) PT \(\Rightarrow3x-4-2x+5=3\)
\(\Rightarrow x=2\)
Vậy ...
4) PT \(\Rightarrow\left[{}\begin{matrix}2x+1=0\\\dfrac{1}{2}x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy ...
3) Ta có: \(\left(3x-4\right)-\left(2x-5\right)=3\)
\(\Leftrightarrow3x-4-2x+5=3\)
\(\Leftrightarrow x+1=3\)
hay x=2
|2x-5|-7=22
15-|2x+3|=8
(2x+4)(x^2+9)=0
2(x-5)-3(x-4)=-6+15.(-3)