Hệ phương trình
(X^2+1)(y^2+1)=10
(X+y)(xy-1)=3
Các bác giải hộ em mãi nộp rồi
giải hệ phương trình
x^2+xy- y=1
và x^2+y^2 - 3xy=11
mấy bác giúp hộ em cái và xem hộ em xem đề bài có sai ko nha . giải mãi ko đc
giải hệ phương trình gồm: x^2+y^2+xy=1; x^3+y^3+x+3y
trình bày cách giải hộ mik vs
giải hệ phương trình gồm: x^2 y^2 xy=1; x^3 y^3 x 3ytrình bày cách giải hộ mik vs
Giải phương trình, hệ phương trình khó (các câu cuối của đề thi lớp 10).
a) \(2\sqrt{x+3}+2x^2=\dfrac{10}{4x-2}+1\)
b) \(\left\{{}\begin{matrix}x^2+y^2=9\\\dfrac{1-x^2}{\left(1+xy\right)^2-\left(x+y\right)^2}-y^2=1\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{x^2}{8}+\dfrac{y^2}{2}=1\\\sqrt{x+2y}=\dfrac{x}{y}\end{matrix}\right.\)
b) Xét phương trình 2 có
(1-x2 )/(1+xy)2 - (x+y)2 - y2 =1
=>(1-x2)/1+2xy+x2y2-x2-2xy-y2 -y2=1
=>(1-x2) /(1-x2 )-y2(1-x2) -y2 =1
=>(1-x2)/(1-x2)(1-y2) -y2=1
=>1/(1-y2) -y2=1
=>1=(1-y2)2
=>1=1-2y2+y4
=>y4-2y2=0
=>y2(y2-2)=0
=>y=0
y2-2=0
=> y=+√2
=> y=-√2
Thay y vào phương trình 1 là ra x
à nhầm ... sửa lại dòng 6
=> 1/(1-y2) - y2=1
=> 1/(1-y2)=1+y2
=> 1=1-y4
=> y=0
=>x=3
=> x=-3
giải hệ phương trình :
(x^2+1)(y^2+1)=10
(x+y)(xy-1)=3
Các pro giải hệ phương trình này giúp em ạ!
x+y+x^2+y^2=8
xy(x+1)(y+1)=12
giải hệ phương trình :
\(\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}\)
giải hộ mik với, mik bình phương pt 1 r mak cứ bị vô ng0
Đặt \(\begin{cases}S=x+y\\P=xy\end{cases}\) hpt đầu trở thành:
\(\begin{cases}S^2-P=9\\S+P=3\end{cases}\)\(\Leftrightarrow\begin{cases}S^2-P=9\\S=3-P\end{cases}\)
\(\Leftrightarrow\left(P-3\right)^2-P=9\)\(\Leftrightarrow P^2-7P+9-9=0\)
\(\Leftrightarrow P\left(P-7\right)=0\Leftrightarrow\)\(\left[\begin{array}{nghiempt}P=0\\P=7\end{array}\right.\)
Nếu \(P=0\Rightarrow S=3-P=3-0=3\)Suy ra hệ đầu tương đương \(\begin{cases}x+y=3\\xy=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=3\\y=0\end{cases}\) hoặc \(\begin{cases}x=0\\y=3\end{cases}\)
Nếu \(P=7\Rightarrow S=3-P=3-7=\left(-4\right)\)Suy ra hệ đầu tương đương \(\begin{cases}x+y=-4\\xy=7\end{cases}\) giải ra ta dc vô nghiệm
Vậy hệ pt trên có nghiệm (x;y) thỏa mãn là (3;0) và (0;3)
đối xứng loại 1 đặt ẩn bình lm j =))
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x\left(2x-2y-1\right)=3\left(y+2\right)\\3y+6\sqrt{2x-1}=y^2-x+23\end{matrix}\right.\)
Các đại thần ơi ra tay giúp đỡ vs huhu sắp nộp rồi ạ!!! :((((
1 số gợi ý
hpt \(\Leftrightarrow\left\{{}\begin{matrix}2x\left(2x-2y-1\right)=6\left(y+2\right)\\6y+12\sqrt{2x-1}=2y^2-2x+46\end{matrix}\right.\)(1)
Đặt \(\sqrt{2x-1}=t\left(t\ge0\right)\)
(1)\(\Leftrightarrow\left\{{}\begin{matrix}\left(t^2+1\right)\left(t^2-2y\right)=6\left(y+2\right)\left(2\right)\\6y+12t=2y^2-t^2+45\end{matrix}\right.\)
(2)\(\Leftrightarrow\left(t^2+4\right)\left(t^2-2y-3\right)=0\)
\(\Leftrightarrow t^2-2y-3=0\)
ta có hpt mới sau : \(\left\{{}\begin{matrix}t^2-2y-3=0\\2y^2-t^2+45=6y+12t\end{matrix}\right.\)
một cách trâu bò nhưng hiệu quả là
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2y^2-t^2-6y-12t+45=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2\left(\dfrac{t^2-3}{2}\right)^2-t^2-6\left(\dfrac{t^2-3}{2}\right)-12t+45=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)
\(\left(a,b,n\in N\right)\left\{{}\begin{matrix}n^2=a+b\\n^3+2=a^2+b^2\end{matrix}\right.\)
Áp dụng BĐT cơ bản : \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)
\(\rightarrow n^3+2=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\left(n^2\right)^2=\dfrac{1}{2}n^4\)
\(\Rightarrow n^3+2-\dfrac{n^4}{2}\ge0\)\(\Rightarrow0\le n\le2\)
Xét từng TH của n và kết quả nhận được là \(n=2\); (a,b) là hoán vị của (1,3)
tớ mượn test cái nha
Áp dụng định lí viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-3\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)
\(x_1\left(x_1^4-1\right)+x_2\left(32x_2^4-1\right)=3\)
\(\leftrightarrow\left(x_1\right)^5+\left(2x_2\right)^5-\left(x_1+x_2\right)=3\)
\(\leftrightarrow x_1^5+\left(2x_2\right)^5-\left(-3\right)=3\)
\(x_1^5+\left(2x_2\right)^5=0\leftrightarrow x_1=-2x_2\)
Thay vào (1)\(\rightarrow x_1=-6;x_2=3\)
Thay vào (2)\(\rightarrow m-1=\left(-6\right).3=-18\rightarrow m=-17\)
Giải các hệ phương trình: x + y x - 1 = x - y x + 1 + 2 x y y - x y + 1 = y + x y - 2 - 2 x y
Vậy nghiệm của hệ phương trình là (x; y) = (0; 0)