Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
jessica an
Xem chi tiết
Phạm Thanh Ngọc
Xem chi tiết
BiBo MoMo
Xem chi tiết
Mathematics❤Trần Trung H...
23 tháng 6 2018 lúc 18:40

\(\text{Ta gọi ước chung lớn nhất của 2n + 8 và n + 1 là d . (d thuộc N*)}\)

\(\hept{\begin{cases}2n+8\text{chia hết cho d}\\n+1\text{chia hết cho d}\end{cases}< =>\hept{\begin{cases}2n+8\text{chia hết cho d}\\2\left(n+1\right)\text{chia hết cho d}\end{cases}< =>}\hept{\begin{cases}2n+8\text{chia hết cho d}\\2n+2\text{chia hết cho d}\end{cases}}}\)

\(=>\left(2n+8\right)-\left(2n+2\right)\text{chia hết cho d}\)

\(=>6\text{chia hết cho d}\)

\(=>\text{ d thuộc ước của 6}\)

              \(\text{Để A là số nguyên tố thì d khác 6 }\)

\(=>n\text{khác}6k+1\)\(\text{(k khác N*)}\)

Nguyễn Ngọc Quế Anh
Xem chi tiết
Thien Nguyen
1 tháng 11 2015 lúc 13:42

1.

a) p = 1

b) p = 1 

c) p = 1 

3.

là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489

Lê Thị Mỹ Duyên
1 tháng 11 2015 lúc 13:36

đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.

Phạm Kim Ngân
27 tháng 10 2021 lúc 7:02

thì có ai kêu là tra loi gium dau

Khách vãng lai đã xóa
Võ Ngọc Phương Uyên
Xem chi tiết
Tuyết Ngọc
Xem chi tiết
Đỗ Đường Quyền
28 tháng 1 2020 lúc 9:28

Bài 1:a)Vì p là số nguyên tố nên p=2,3,5,7,...

-Với p=2 thì p+10=12(hợp số)\(\rightarrow\)loại

-Với p=3 thì p+10=13, p+20=23 (số nguyên tố)\(\rightarrow\)chọn        

-Với p>3 và p là số nguyên tố nên p không chia hết cho 3;p+10,p+20>3 nên:

Nếu p=3k+1 thì p+20=3k+21\(⋮\)3(hợp số)\(\rightarrow\)loại

Nếu p=3k+2 thì p+10=3k+12\(⋮\)3(hợp số)\(\rightarrow\)loại

Vậy p=3 là giá trị cần tìm

Còn lại bạn cứ tiếp tục nhé

         

Khách vãng lai đã xóa
Titania Erza Scarlet
Xem chi tiết
Phương Thảo Linh 0o0
9 tháng 8 2017 lúc 18:32

Ta có: A> / x-1+5-x/

A>hoặc =/ 4/

Min A= 4 đạt đc khi x-1 và 5-x cùng dấu

th1: Nếu \(\hept{\begin{cases}x-1>0\\5-x>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>=2\\x< =5\end{cases}}\)( lớn ( bé) hơn hoặc =)

\(\Rightarrow x\in1,2,3,4,5\)

th2: Nếu \(\hept{\begin{cases}x-1< 0\\5-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>5\end{cases}}}\)

\(\Rightarrow x\in\)rỗng

Vậy...........

Phương Thảo Linh 0o0
9 tháng 8 2017 lúc 18:56

B= /x+1/+ /x-8/

Ta có: x-8 và 8-x là 2 số đối nhau \(\Rightarrow\)/x-8/=/8-x/

\(\Rightarrow\)B= /x+1/+/8-x/

B > /x+1+8-x/

B >=9

Min 9 đạt đc khi x+1 và 8-x cùng dấu.

th1: Nếu \(\hept{\begin{cases}x+1>0\\8-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>=-1\\x< =8\end{cases}}}\)

\(\Rightarrow x\in-1,0,1,2,3,4,5,6,7,8\)

th2: Nếu \(\hept{\begin{cases}x+1< 0\\8-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< =-1\\x>=-8\end{cases}}}\)

\(\Rightarrow x\in\)rỗng

Nguyễn Lê _ Na
Xem chi tiết
Hồng Anh
Xem chi tiết
Nguyễn Ngọc Linh
6 tháng 1 2021 lúc 17:44

ok how are you

Khách vãng lai đã xóa
Nguyễn Hoàng Long
Xem chi tiết
Tiểu Thiên Yết
31 tháng 3 2020 lúc 14:31

Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)

Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)

Với \(x\ge2\) ta có:

\(n^5+n^4+1\)

\(=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)

Vậy \(n=1\)

Khách vãng lai đã xóa
Tiểu Thiên Yết
31 tháng 3 2020 lúc 14:37

Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT

Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT

Với \(n\ge2\) ta có:

\(A=n^8+n+1\)

\(=\left(n^8-n^2\right)+n^2+n+1\)

\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)

\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)

Vậy \(n=1\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
31 tháng 3 2020 lúc 19:17

1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)

TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)

Thử lại sai

TH2: \(n^2+n+1=n^5+n^4+1\)

\(\Leftrightarrow n^5-n^2+n^4-n=0\)

\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)

Thử lại thấy n=1 thỏa mãn

Vậy n=1

Khách vãng lai đã xóa