Cho : A = 2x + 8 - 8 + 8/ x + 1 - 1 + 1
Tìm các số tự nhiên x để A là số nguyên tố
1) tìm số nguyên tố p sao cho tồn tại số tự nhiên n để: p= n^3 - n^2 + n-1
2) cho dãy số -1 ;-8; -15; -22; ...... số hạng thứ 2015 của dãy
3) cho biểu thức M= 8.( a-b) + 16b với 2. ( a-b) +7 =19
4) cho phân số a/b với a,b là số tự nhiên, nếu cộng tử với 8, và trừ mẫu cho 3 thì phân số có giá trị bằng 1. zậy a-b =..l.
5) tập hợp số nguyên x thõa mản: (x+3) . (2x-5) . ( 2x-8 ) =0
6) số lớn nhất có 4 chự số chia hết cho 17
7) tìm số nguyên tố p để ; p^2+ 13 cũng là số nguyên tố
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Cho phân số A= 2n+8/n+1 (nEN) . Tìm các số tự nhiên n để A là số nguyên tố
\(\text{Ta gọi ước chung lớn nhất của 2n + 8 và n + 1 là d . (d thuộc N*)}\)
\(\hept{\begin{cases}2n+8\text{chia hết cho d}\\n+1\text{chia hết cho d}\end{cases}< =>\hept{\begin{cases}2n+8\text{chia hết cho d}\\2\left(n+1\right)\text{chia hết cho d}\end{cases}< =>}\hept{\begin{cases}2n+8\text{chia hết cho d}\\2n+2\text{chia hết cho d}\end{cases}}}\)
\(=>\left(2n+8\right)-\left(2n+2\right)\text{chia hết cho d}\)
\(=>6\text{chia hết cho d}\)
\(=>\text{ d thuộc ước của 6}\)
\(\text{Để A là số nguyên tố thì d khác 6 }\)
\(=>n\text{khác}6k+1\)\(\text{(k khác N*)}\)
1. Tìm các số nguyên tố sao cho các số sau đây cũng là số nguyên tố:
a. p+2 và p+10
b. p+10 và p+20
c. p+2 , p+6 , p+8 , p+12 , p+14
2. Tổng của 3 số nguyên tố là 1012, tìm số nhỏ nhất trong ba số nguyên tố đó.
3. Tổng sau là số nguyên tố hay hợp số? Vì sao?
2 * 3 * 5 * 7 * 11 + 13 * 17 * 19 * 21
4. Tìm số tự nhiên n sao cho n+8 chia hết cho n+1
5. Tìm số nguyên tố a để 4*a+11 là số nguyên tố <30
6.Tìm các số tự nhiên x,y sao cho:
(2x+1) .(y-3)
Ccá bạn làm cả bài giải giúp mình nha, mình phải có trước tôi thứ hai, thông cảm, bài nhiều là do thầy mình, mình hứa sẽ bám đúng, thề danh dự
1.
a) p = 1
b) p = 1
c) p = 1
3.
là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489
đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.
thì có ai kêu là tra loi gium dau
Câu hỏi 1: Tập hợp các số nguyên n để 8n + 3 chia hết cho 2n - 1 là {}
Câu hỏi 2: Cho p là số nguyên tố lớn hơn 2. Số dư của khi chia cho 3 là
Câu hỏi 5: Tìm cặp (x ; y) nguyên âm thỏa mãn xy + 3x + 2y + 6 = 0 và |x| + |y| = 5.
Câu hỏi 6: Tìm số tự nhiên a biết 2236 và 2284 chia cho a có cùng số dư là 28.
Câu hỏi 7: Tìm x biết x + 2x + 3x + ⋯ + 10x = -165.
Câu hỏi 8: Số tự nhiên có hai chữ số để chia hết cho 8 và 9 là
Câu hỏi 9: Tìm số nguyên tố p sao cho và cũng là số nguyên tố.
Bài 1:tìm số nguyên tố p sao cho
a)p+10 và p+20 đều là các số nguyên tố
b) p+2,p+6,p+8,p+14 đều là các số nguyên tố
Bài 2:a)Tìm các số nguyên x ,y.Sao cho(2x+1)(y-5)=12
b)Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1
c)Tìm tất cả các số B=62xy427,biết rằng số B chia hế cho 99
Bài 1:a)Vì p là số nguyên tố nên p=2,3,5,7,...
-Với p=2 thì p+10=12(hợp số)\(\rightarrow\)loại
-Với p=3 thì p+10=13, p+20=23 (số nguyên tố)\(\rightarrow\)chọn
-Với p>3 và p là số nguyên tố nên p không chia hết cho 3;p+10,p+20>3 nên:
Nếu p=3k+1 thì p+20=3k+21\(⋮\)3(hợp số)\(\rightarrow\)loại
Nếu p=3k+2 thì p+10=3k+12\(⋮\)3(hợp số)\(\rightarrow\)loại
Vậy p=3 là giá trị cần tìm
Còn lại bạn cứ tiếp tục nhé
bài1:Tìm giá trị nhỏ nhất của:
A=|x-1| + |5-x|
B=|x+1| + |x-8|
Bài 2: Tìm n là số tự nhiên để:
a) n2 + 5 chia hết cho n+1
b)n2-3n là số nguyên tố
c)m.n+3n-2m-6 là số nguyên tố
Ta có: A> / x-1+5-x/
A>hoặc =/ 4/
Min A= 4 đạt đc khi x-1 và 5-x cùng dấu
th1: Nếu \(\hept{\begin{cases}x-1>0\\5-x>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>=2\\x< =5\end{cases}}\)( lớn ( bé) hơn hoặc =)
\(\Rightarrow x\in1,2,3,4,5\)
th2: Nếu \(\hept{\begin{cases}x-1< 0\\5-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>5\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
Vậy...........
B= /x+1/+ /x-8/
Ta có: x-8 và 8-x là 2 số đối nhau \(\Rightarrow\)/x-8/=/8-x/
\(\Rightarrow\)B= /x+1/+/8-x/
B > /x+1+8-x/
B >=9
Min 9 đạt đc khi x+1 và 8-x cùng dấu.
th1: Nếu \(\hept{\begin{cases}x+1>0\\8-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>=-1\\x< =8\end{cases}}}\)
\(\Rightarrow x\in-1,0,1,2,3,4,5,6,7,8\)
th2: Nếu \(\hept{\begin{cases}x+1< 0\\8-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< =-1\\x>=-8\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
Tìm các số tự nhiên k để cho số 2k + 24 + 27 là một số chính phương
Tìm các số nguyên x sao cho A = x(x-1)(x-7)(x-8) là một số chính phương
Cho A = p4 trong đó p là một số nguyên tố
a. Số A có những ước dương nào ?
b. Tìm các giá trị của p để tổng các ước dương của A là một số chính phương
Cho biểu thức A= 8/x (x e N ,x khac 0)
a) Tính giá trị của A khi x =-8;x =-2;x =1;x =2;x =4;x =3;x= 5;x=- 7 .
b) Từ câu a hãy rút ra nhận xét: Số nguyên x cần có điều kiện gì để A có giá trị là số nguyên? Vận dụng nhận xét trên làm bài tập sau: Bài tập: Tìm các số tự nhiên x để các phân số sau có giá trị là số nguyên B=- 6/x, C =5/x+ 1, D= 4/1 -x, E =x + 2/x, F =2x-3/x+ 2
1. Tìm các số tự nhiên n để \(n^5+n^4+1\)là số nguyên tố.
2. Tìm các số tự nhiên n để \(n^8+n+1\)là số nguyên tố.
Cảm ơn các bạn!
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)
TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)
Thử lại sai
TH2: \(n^2+n+1=n^5+n^4+1\)
\(\Leftrightarrow n^5-n^2+n^4-n=0\)
\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)
Thử lại thấy n=1 thỏa mãn
Vậy n=1