TÌM SỐ TỰ NHIÊN X BIẾT RẰNG:
1/3+1/6+1/10+...+2/x(x+1)= 2007/2009
Tìm số tự nhiên x biết rằng : 1/3 + 1/6 + 1/10 +....+ 2/x(x+1) = 2007/2009
Đặt vế trái là A ta có:
\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...
Đặt vế trái là A ta có:
Tìm số tự nhiên x biết rằng : 1/3 +1/6 +1/10 + ... + 2/x(x+1) = 2007/2009
ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)
giải 1-2/(x+1) = 2007/2009 ta được x=2008
tìm số tự nhiên x biết rằng : 1 phần 3 + 1 phần 6 + 1 phần 10 + ... 2 phần x(x+1)= 2007 phần 2009
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.(x+1)}=\frac{2007}{2009}\)
=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2017}{2019}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2017}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2019}\)
Vì 1 = 1
=> x + 1 = 2019
=> x = 2019 - 1
=> x = 2018
tra
r lời
x=2018
chúc bn
hc tốt
Trả lời:
x = 2018
~ Học tốt ~
......................
tìm số tự nhiên x biết: 1/3+1/6+1/10+ ......... +2/x(x+1) bằng 2007/2009
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}\)
\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)\)
\(=1-\frac{2}{x+1}\)
Phương trình ban đầu tương đương với:
\(1-\frac{2}{x+1}=\frac{2007}{2009}\)
\(\Leftrightarrow x=2008\).
1) tìm số tự nhiên x,biết rằng: 1/3+1/6+1/10+...+2/x(x+1)=2007/2009
2)so sánh:S=2/1*2*3+2/2*3*4+2/3*4*5+...+2/2009+2010+2011 và P=1/2
1.1/3+1/6+1/10+...+2/x.(x+1)=2007/2009
=>2/6+2/12+2/20+...+2/x.(x+1)=2007/2009
=>1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)=2007/2009:2
=>1/2-1/(x+1)=2007/4018
=>1/(x+1)=1/2-2007/4018
=>1/x+1=1/2009
=>x+1=2009
=>x=2009-2008
=>x=1
vậy x=1
làm đúng rồi nhưng phần:
x+1=2009
x=2009-1
x=2008
mà bạn
Đặt A= \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\) \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times\left(x+1\right)}=\frac{2007}{4018}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}=\frac{2007}{4018}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\Leftrightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\Rightarrow A=1-\frac{2}{x+1}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{x+1}=1-\frac{2007}{2009}\)
\(\Leftrightarrow\frac{2}{x+1}=\frac{2}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Leftrightarrow x=2009-1\)
\(\Leftrightarrow x=2008\)
Vậy x=2008
Tìm số tự nhiên x biết rằng : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}\div2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)
\(\Rightarrow\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Rightarrow x=2008\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
=>\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)(nhân cả hai vế với \(\frac{1}{2}\))
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)= \(\frac{2007}{4018}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(\frac{1}{x+1}\)=\(\frac{1}{2}-\frac{2007}{4018}\)
\(\frac{1}{x+1}=\frac{1}{2009}\)
x+1=2009
x=2009-1=2008
Vậy x bằng 2008
Tìm số tự nhiên x biết rằng:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..........+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Em tham khảo nhé!
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
=>\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{2009}:2=\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}=\frac{2009}{4018}-\frac{2007}{4018}\)
=> \(\frac{1}{x+1}=\frac{2}{4018}=\frac{1}{2009}\)
=> \(1\cdot2009=1\left(x+1\right)\)
=> \(x+1=2009\Rightarrow x=2009-1=2008\)
Vậy x = 2008
Chúc bn hk tốt !
a) Chứng minh C=1/22+1/42+1/62+...+1/1002<1/2
b) Tìm số tự nhiên x biết rằng:1/3+1/6+1/10+...+2/x.(x+1)=2007/2009
Các bạn giúp mk với ạ mk cần gấp lắm ai giải đúng đầu tiên mk sẽ tick.Thanks!
b)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2007}{2009}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}:\frac{1}{2}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)
\(=\frac{1}{x-1}=\frac{1}{2009}\Leftrightarrow x+1=2009\)
\(\Rightarrow x=2009-1=2008\)
Bạn Phúc Trần Tấn bạn có biết làm phần a ko?Giúp mk với ạ!Mai mk cần rùi
tìm số tự nhiên x biết 1/3+1/6+1/10+........+1/x(x+1) chia 2=2009/2-11