Chứng minh :
sin20 + 2sin40 - sin100 = sin 40
đơn vị là độ
Không dùng bảng số và máy tính, chứng minh rằng :
a) \(\sin20^0+2\sin40^0-\sin100^0=\sin40^0\)
b) \(\dfrac{\sin\left(45^0+\alpha\right)-\cos\left(45^0+\alpha\right)}{\sin\left(45^0+\alpha\right)+\cos\left(45^0+\alpha\right)}=\tan\alpha\)
c) \(\dfrac{3\cot^215^0-1}{3-\cot^215^0}=-\cot15^0\)
d) \(\sin200^0\sin310^0+\cos340^0\cos50^0=\dfrac{\sqrt{3}}{2}\)
a) \(sin20^o+2sin40^o-sin100^o=sin20^o-sin100^o+2sin40^o\)
\(=2cos60^osin\left(-40^o\right)+2sin40^o\)\(=-2cos60^osin40^o+2sin40^o\)
\(=2sin40^o\left(-cos60^o+1\right)=2sin40^o.\left(-\dfrac{1}{2}+1\right)=sin40^o\)(đpcm).
b) \(\dfrac{sin\left(45^o+\alpha\right)-cos\left(45^o+\alpha\right)}{sin\left(45^o+\alpha\right)+cos\left(45^o+\alpha\right)}\)
\(=\dfrac{sin\left(45^o+\alpha\right)-sin\left(45^o-\alpha\right)}{sin\left(45^o+\alpha\right)+sin\left(45^o-\alpha\right)}=\dfrac{2cos45^o.sin\alpha}{2sin45^o.cos\alpha}\)
\(=tan\alpha\) (Đpcm).
d) \(sin200^osin310^o+cos340^ocos50^o\)
\(=sin20^o.sin50^o+cos20^ocos50^o\)
\(=cos\left(50^o-20^o\right)=cos30^o\).
a) Không dùng máy tính. Hãy tính: \(3\sin20-3\cos70+\frac{4\tan70}{\cot20}\)
b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào số đo của góc nhọn a
\(2\tan^2a-\frac{1}{1+\sin a}-\frac{1}{1-\sin a}\)
không dùng máy tính hãy giá trị của biểu thức sau
B= sin200 + sin400 - sin800
C = sin1600 + sin1400 -sin1000
\(B=sin20-sin80+sin40\)
\(B=-2cos50.sin30+sin40\)
\(B=-cos50+sin40\)
\(B=-cos\left(90-40\right)+sin50\)
\(B=-sin40+sin40=0\)
\(C=sin160-sin100+sin\left(180-40\right)\)
\(C=2cos130.sin30+sin40\)
\(C=cos130+sin40\)
\(C=cos\left(90+40\right)+sin40\)
\(C=-sin40+sin40=0\)
Một cây cầu có dạng cung OA của đồ thị hàm số \(y = 4,8\sin \frac{x}{9}\) và được mô tả trong hệ trục tọa độ với đơn vị trục là mét như ở Hình 40.
a) Giả sử chiều rộng của con sông là độ dài đoạn thẳng OA. Tìm chiều rộng đó (Làm tròn kết quả đến hàng phần mười)
b) Một sà lan chở khối hàng hóa được xếp thành hình hộp chữ nhật với độ cao 3,6m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hóa đó phải nhỏ hơn 13,1m.
c) Một sà lan khác cũng chở khối hàng hóa được xếp thành hình hộp chữ nhật với chiều rộng của khối hàng hóa đó là 9m sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều cao của khối hàng hóa đó phải nhỏ hơn 4,3m
Tham khảo:
a) Hai vị trí \(O\) và \(A\) là hai vị trí chân cầu, tại hai vị trí này ta có: \(y = 0\)
\( \Leftrightarrow 4,8 \cdot \sin \frac{x}{9} = 0 \Leftrightarrow \sin \frac{x}{9} = 0 \Leftrightarrow \frac{x}{9} = k\pi (k \in \mathbb{Z}) \Leftrightarrow x = 9k\pi (k \in \mathbb{Z})\)
Quan sát đồ thị ta thấy, đồ thị hàm số \({\rm{y}} = 4,8 \cdot \sin \frac{x}{9}\) cắt trục hoành tại điểm 0 và \({\rm{A}}\) liên tiếp nhau với \(x \ge 0\).
Xét \({\rm{k}} = 0\), ta có \({{\rm{x}}_1} = 0\);
Xét \({\rm{k}} = 1\), ta có \({{\rm{x}}_2} = 9\pi \).
Mà \({x_1} = 0\) nên đây là hoành độ của 0 , do đó \({x_2} = 9\pi \) là hoành độ của điểm \(A\).
Khi đó \(OA = 9\pi \approx 28,3\).
Vậy chiều rộng của con sông xấp xỉ 28,3 m.
b) Do sà lan có độ cao 3,6 m so với mực nước sông nên khi sà lan đi qua gầm cầu thì ứng với \({\rm{y}} = 3,6\).
\( \Leftrightarrow 4,8 \cdot \sin \frac{x}{9} = 3,6 \Leftrightarrow \sin \frac{x}{9} = \frac{3}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{{\rm{x}}}{9} \approx 0,848 + {\rm{k}}2\pi }\\{\frac{{\rm{x}}}{9} \approx \pi - 0,848 + {\rm{k}}2\pi }\end{array}} \right.\)
(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp \(SHIFT\)\sin 3 \div 4 = ta được kết quả gần đúng là 0,85) \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{x}} \approx 7,632 + 18{\rm{k}}\pi }\\{{\rm{x}} \approx 9\pi - 7,632 + 18{\rm{k}}\pi }\end{array}({\rm{k}} \in \mathbb{Z})} \right.\)
Xét \({\rm{k}} = 0\), ta có \({{\rm{x}}_1} \approx 7,632;{{\rm{x}}_2} \approx 20,642\).
Ta biểu diễn các giá trị \(x\) vừa tìm được trên hệ trục tọa độ vẽ đồ thị hàm số \(y = \) 4,8. \(\sin \frac{x}{9}\) như sau:
Khi đó để sà lan có thể đi qua được gầm cầu thì khối hàng hóa có độ cao 3,6 m phải có chiều rộng nhỏ hơn độ dài đoạn thẳng \({\rm{BC}}\) trên hình vẽ.
Mà \(BC \approx 20,642 - 7,632 = 13,01(m) < 13,1(m)\).
Vậy chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.
c) Giả sử sà lan chở khối hàng được mô tả bởi hình chữ nhật MNPQ:
Khi đó \(QP = 9;OA = 28,3\) và \(OQ = PA\).
Mà \(OQ + QP + PA = OA \Rightarrow OQ + 9 + OQ \approx 28,3 \Rightarrow OQ \approx 9,65\)
Khi đó \({y_M} = 4,8 \cdot \sin \frac{{{x_M}}}{9} = 4,8 \cdot \sin \frac{{OQ}}{9} \approx 4,8 \cdot \sin \frac{{9,65}}{9} \approx 4,22(\;{\rm{m}}) < 4,3\) (m).
Vậy để sà lan có thể đi qua được gầm cầu thì chiều cao của khối hàng hoá đó phải nhỏ hơn 4,3 m.
Cho tam giác ABC vuông tại A, đường cao AH. Phan giác góc ABC cắt AH tại D. Kẻ DM vuông góc với AB ( M thuộc AB ). Đường thẳng MD cắt BC tại N
1) Chứng minh tam giác BMD = tam giác BHD
2. Chứng minh tam giác ADN là tam giác cân và AN là tia phân giác của góc HAC
3. Cho BD = 2 (đơn vị độ dài). Chứng minh AB - AD > 1 (đơn vị độ dài)
a, xét tam giác BMD và tam giác BHD có : BD chung
góc ABD = góc DBH do BD là phân giác của góc ABC (gt)
góc DMB = góc DHB = 90
=> tam giác BMD = tam giác BHD (ch - gn)
b, xét tam giác ADM và tam giác NDH có : góc NDH = góc MDA (đối đỉnh)
góc NHD = góc DMA = 90
MD = DH do tam giác BMD = tam giác BHD (Câu a)
=> tam giác ADM = tam giác NDH (cgv-gnk)
=> DA = DN (đn)
=> tam giác ADN cân tại D (Đn)
chứng minh
sin 105 độ = sin 75 độ
sin 105 = sin(180-105) = sin75
Chứng minh rằng không tồn tại một tam giác có độ dài ba đường cao là 1; 3 ; 3 + 1 ( cùng đơn vị đo).
Giả sử tồn tại một tam giác có độ dài các đường cao là : h 1 = 1; h 2 = √3; h 3 = 1 + √3 (cùng đơn vị đo )
Gọi a 1 ; a 2 ; a 3 lần lượt là độ dài ba cạnh tương ứng với các đường cao h 1 ; h 2 ; h 3 .
Ta có:
a 1 ; a 2 ; a 3 lần lượt là 3 cạnh của tam giác nên:
Vậy không tồn tại một tam giác có độ dài 3 đường cao lần lượt là 1; 3 1 + 3 (cùng đơn vị đo)
Hãy chứng minh tế bào là đơn vị chức năng của cơ thể.
Giúp mk với ạ.. mk đang cần gấp ạ
Câu: Chức năng của tế bào là thực hiện sự trao đổi chất và năng lượng, cung cấp năng lượng cho mọi hoạt động sống của cơ thể. Ngoài ra, sự phân chia của tế bào giúp cơ thể lớn lên tới giai đoạn trưởng thành có thể tham gia vào quá trình sinh sản. Như vậy, mọi hoạt động sống của cơ thể đều liên quan đến hoạt động sống của tế bào nên tế bào còn là đơn vị chức năng của cơ thể.
Chứng minh tế bào là đơn vị chức năng của cơ thể:
* Tất cả các hoạt động sống của cơ thể đều xảy ra ở tế bào như:
- Màng sinh chất: giúp tế bào thực hiện sự trao đổi chất với môi trường.
- Tế bào chất: là nơi xảy ra các hoạt động sống như:
+ Ty thể: là nơi tạo ra năng lượng cho hoạt động sống của tế bào và cơ thể.
+ Ribôxôm: là nơi tổng hợp Prôtêin.
+ Bộ máy Gôngi: thực hiện chức năng bài tiết.
+ Trung thể: Tham gia vào quá trình phân chia và sinh sản của tế bào.
+ Lưới nội chất: đảm bảo sự liên hệ giữa các bào quan.
- Nhân: Điều khiển mọi hoạt động sống của tế bào. Trong nhân có chức nhiễn sắc thể có vai trò quyết định trong di truyền. Trong nhân còn có màng nhân giúp nhân trao đổi chất với tế bào chất.
Tất cả các hoạt động nói trên làm cơ sở cho sự sống, sự lớn lên và sự sinh sản của cơ thể; đồng thời giúp cơ thể phản ứng chính xác các tác động của môi trường sống.
+ Sự trao đổi chất của tế bào là cơ sở cho sự trao đổi chất giữa cơ thể với môi trường.
+ Sự sinh sản của tế bào là cơ sở cho sự sinh trưởng và sinh sản của cơ thể.
+ Sự cảm ứng của tế bào là cơ sở cho sự phản ứng của cơ thể với kích thích của môi trường.
Vì vậy, tế bào được xem là đơn vị chức năng của cơ thể.