3/3x6 + 3/6x9 + 3/9x12 + 3/12x15 + 3/15x18
A= \(\dfrac{7}{3x6}\) + \(\dfrac{7}{6x9}\) + \(\dfrac{7}{9x12}\) + \(\dfrac{7}{12x15}\) + ... + \(\dfrac{7}{96x99}\)
A = \(\dfrac{7}{3\times6}\) + \(\dfrac{7}{6\times9}\) + \(\dfrac{7}{9\times12}\) + \(\dfrac{7}{12\times15}\)+ .....+\(\dfrac{7}{96\times99}\)
A = \(\dfrac{7}{3}\) x ( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+ \(\dfrac{3}{9\times12}\)+ \(\dfrac{3}{12\times15}\)+......+\(\dfrac{3}{96\times99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{12}\)+ \(\dfrac{1}{12}\) - \(\dfrac{1}{15}\)+....+ \(\dfrac{1}{96}\) - \(\dfrac{1}{99}\))
A = \(\dfrac{7}{3}\) x ( \(\dfrac{1}{3}\)- \(\dfrac{1}{99}\))
A = \(\dfrac{224}{297}\)
Bài:1
B = 1/3 +1/9 + 1/27 + 1/81 + 1/243 + 1/729
C = 1/3 + 1/9 + 1/27 + 1/81 + ............+ 1/59040
A= 2/3x5 + 2/7x9 + 2/9x11 + 2/11x13 + 2/13x15 + 2/1x2 + 2/2x3 + 2/3x4 + 2/4x5 + .............+ 2/8x9 + 2/9x10
B = 4/3X6 + 4/ 6X9 + 4/ 9X12 + 4/ 12X15 + 4/15x18
C = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/345
bài:2 .Cho tổng.
S = 4/3X7 + 4/7X11 + 4/11/15 + ..........= 664/ 1995
Tìm số hạng cuối cùng của dãy S
Tổng S có bao nhiêu số hạng
Ta có: \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)
\(\Rightarrow2B=1-\frac{1}{3^6}\)
\(\Rightarrow B=\frac{1-\frac{1}{3^6}}{2}\)
Tính nhanh
A.3/3x6+3/6x9+3/9x12+...+3/93x96+3/96x99
B.1/2x5+1/5x8+1/8x11+...+1/95*98
\(A=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{93.96}+\frac{3}{96.99}\)
\(A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{93}-\frac{1}{96}+\frac{1}{96}-\frac{1}{99}\)
\(A=1-\frac{1}{99}=\frac{98}{99}\)
Vậy A=\(\frac{98}{99}\)
\(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{95.98}\)
\(3B=\)\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{95.98}\)
\(3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{98}\)
\(3B=\frac{1}{2}-\frac{1}{98}=\frac{24}{49}\)
\(B=\frac{24}{49}:3=\frac{8}{49}\)
Vậy B=\(\frac{8}{49}\)
Dấu "." là dấu nhân.
_Học tốt_
TÍNH NHANH:
a]S=3+1/3x6+1/6x9+1/9x12+...+1/96x99
b]S=1/1x2x3+1/2x3x4+1/3x4x5+...+1/37x38x39
Vũ Thị Trang lại là một nạn nhân tiếp tục bị báo cáo
bài 1:tính bằng cách thuận tiện nhất
A=1/3x6+1/6x9+1/9x12+...+1/96x99+1/99x102
làm đầy đủ mik tick 2.giúp:@@
nhân cả vế với 3 ta có
Ax3=\(\frac{3}{3x6}\)+\(\frac{3}{6x9}\)+.........+\(\frac{3}{99x102}\)
Ax3=\(\frac{1}{3}\)-\(\frac{1}{6}\)+.....+\(\frac{1}{99}\)-\(\frac{1}{102}\)
Ax=\(\frac{1}{3}\)-\(\frac{1}{102}\)
Ax3=\(\frac{11}{34}\)
A=\(\frac{11}{34}\):3
A=\(\frac{11}{102}\)
gạch đi các số lặp lại thì còn phân số 1/3 và 1/102 lấy \(\frac{1}{3}-\frac{1}{102}=\frac{33}{102}\)
\(A=\frac{1}{3x6}+\frac{1}{6x9}+\frac{1}{9x12}+....+\frac{1}{99x102}\)
\(Ax3=\frac{3}{3x6}+\frac{3}{6x9}+.............+\frac{3}{99x102}\)
\(Ax3=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+.....+\frac{1}{99}-\frac{1}{102}\)
\(Ax3=\frac{1}{3}-\frac{1}{102}\)
\(Ax3=\frac{11}{34}\)
\(A=\frac{11}{34}:3=\frac{11}{102}\)
\(\frac{3}{1x2}+\frac{3}{2x3}+\frac{3}{3x4}+\frac{3}{4x5}+\frac{3}{5x6}+....+\frac{3}{9x10}+\frac{77}{2x9}+\frac{77}{9x16}+\frac{77}{16x23}+...+\frac{77}{93x100}\)
\(\frac{4}{3x6}+\frac{4}{6x9}+\frac{4}{9x12}+\frac{4}{12x15}\) \(\frac{7}{1x5}+\frac{7}{5x9}+\frac{7}{9x13}+\frac{7}{13x17}+\frac{7}{17x21}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\) \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{138}+\frac{1}{340}\)
Toán quá dễ. Tự túc là hạnh phúc mọi nhà bn nhé !
\(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+\frac{3}{5.6}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\)
Gọi \(\left(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+......+\frac{3}{9.10}\right)\)là \(A\); \(\left(\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}\right)\)là B . Ta có :
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}.\left(\frac{1}{1}-\frac{1}{10}\right)\)
\(A=\frac{3}{1}\cdot\frac{9}{10}=\frac{27}{10}\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{6}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{93}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(B=\frac{77}{7}\cdot\frac{49}{100}=\frac{539}{100}\)
\(\Rightarrow\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+...+\frac{3}{9.10}+\frac{77}{2.9}+\frac{77}{9.16}+\frac{77}{16.23}+...+\frac{77}{93.100}=\frac{27}{10}+\frac{539}{100}=\frac{809}{100}\)
\(\frac{4}{3.6}+\frac{4}{6.9}+\frac{4}{9.12}+\frac{4}{12.15}\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{4}{3}\cdot\frac{4}{15}=\frac{16}{45}\)
\(\frac{7}{1.5}+\frac{7}{5.9}+\frac{7}{9.13}+\frac{7}{13.17}+\frac{7}{17.21}\)
\(=\frac{7}{4}\cdot\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}\cdot\left(\frac{1}{1}-\frac{1}{21}\right)\)
\(=\frac{7}{4}\cdot\frac{20}{21}=\frac{5}{3}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Sủa đề : \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\cdot\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\cdot\frac{9}{20}=\frac{3}{20}\)
Tính giá trị biểu thức: \(\frac{5}{3x6}\)+\(\frac{5}{6x9}\)+\(\frac{5}{9x12}\)+...+\(\frac{5}{42x45}\)
So sánh A và B:
A= 111111/666665 , B=1x2+2x4+3x6+4x8+5x10/3x4+6x8+9x12+12x16+15x20
Ai giúp mình sẽ được tích 3 cái cộng với 1 phần quà!!!
So sánh A và B biết
B= (1.2+2.4+3.6+4.8+5.10) / (3.4+6.8+9.12+12.16+15.20)
A=111111/666665
ta có:
Tử B=1.2+2.4+3.6+4.8+5.10
=2+8+18+48+50=126
Mẫu B=3.4+6.8+9.12+12.16+15.20
=12+48+108+192+300=660
Phân số 126/660
So sánh phân sô126/660 và phân số 111111/666665
hay so sánh 126.666665 và 111111.660
hay 83999790 và 73333260
vậy 83999790>73333260
nên phân số B>A
\(\text{1x2 + 2x4 + 3x6 + 4x8 + 5x10 / 3x4 + 6x8 + 9x12 + 12x16 + 15x20}\)
\(\text{Mẫu số : 3x4 + 6x8 + 9x12 + 12x16 + 15x20 = 3 x 2 x (1x2 + 2x4 + 3x6 + 4x8 + 5x10)}\)
\(\text{Vậy (1x2 + 2x4 + 3x6 + 4x8 + 5x10) / (3 x 2 x (1x2 + 2x4 + 3x6 + 4x8 + 5x10)) = 1/3x2 = 1/6}\)
\(A=\frac{111111}{666665}=\)bạn tự rút gọn nha !
1x2 + 2x4 + 3x6 + 4x8 + 5x10 / 3x4 + 6x8 + 9x12 + 12x16 + 15x20
Mẫu số : 3x4 + 6x8 + 9x12 + 12x16 + 15x20 = 3 x 2 x (1x2 + 2x4 + 3x6 + 4x8 + 5x10)
Vậy (1x2 + 2x4 + 3x6 + 4x8 + 5x10) / (3 x 2 x (1x2 + 2x4 + 3x6 + 4x8 + 5x10)) = 1/3x2 = 1/6
=> A ... B
1 tính nhanh . 4 / 3x6 + 4 / 6x3 + 4/ 9 x12 + 4/12x15
2 . tính nhanh : 7/1x5x8 + 7/5x8x12 +7/8x12x12 + ...+ 7/ 32x36x 45
3. tinh nhanh : 328/435 x 438/432 x 435/164 x 432/984 x 164/468
làm được hết mình tặng 5 like