Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen van quyen
Xem chi tiết
Nguyễn Ngọc Anh Minh
30 tháng 8 2016 lúc 14:13

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1.\) (T/c dãy tỷ số băng nhau)

\(\Rightarrow a+b+c=a+b-c\Rightarrow2c=0\Rightarrow c=0\)

Leonard Cato
15 tháng 11 2020 lúc 16:34

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình

Khách vãng lai đã xóa
Tô Viết Hoàng
Xem chi tiết
Hoàng Phúc
19 tháng 7 2016 lúc 14:59

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

Theo t/c dãy tỉ số=nhau,ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}\)

\(=\frac{2b}{2b}=1\)

\(=>a+b+c=a+b-c=>c=-c=>c-\left(-c\right)=0\)

\(=>c+c=0=>2c=0=>c=0\)

Vậy c=0

Đỗ Thị Hông
2 tháng 7 2019 lúc 7:58

i donts no

Nguyễn Quyết Thắng
9 tháng 3 2022 lúc 20:14

cần 2 trường hợp:
- a+b=0
- a+b khác 0 là trường hợp đã làm

Khách vãng lai đã xóa
Hà Văn Quang Anh
Xem chi tiết
Xyz OLM
9 tháng 7 2021 lúc 9:55

Ta có \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)(dãy tỉ số bằng nhau)

Khi đó a + b + c = a + b - c 

<=> c = - c

<=> 2 x c = 0

<=> c = 0(đpcm) 

Khách vãng lai đã xóa
Hoàng Như Quỳnh
9 tháng 7 2021 lúc 10:01

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)

\(\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)

\(a^2+ab+ac-ab-b^2-bc-ac-bc-c^2=a^2+ab-ac-ab-b^2+bc+ac+cb-c^2\)

\(a^2-b^2-c^2-2bc=a^2-b^2-c^2+2bc\)

\(-2bc=2bc\)

mà \(b\ne0\)

thì \(-2bc;2bc\)trái dấu 

vậy để \(-2bc=2bc\)thì \(c=0\)

\(< =>ĐPCM\)

Khách vãng lai đã xóa
Con Gái Họ Trần
Xem chi tiết
thanh tam tran
29 tháng 8 2016 lúc 20:09

bacd=dacb vay ...

Sống cho đời lạc quan
10 tháng 12 2016 lúc 20:18

tự làm đi cái này không khó 

Bright Star
Xem chi tiết
Đặng Tiến
2 tháng 8 2016 lúc 19:26

Ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+b+c+a-b+c}{a+b-c+a-b-c}=\frac{2a+2c}{2a-2c}=\frac{2\left(a+c\right)}{2\left(a-c\right)}=\frac{a+c}{a-c}\left(1\right)\)\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a+c}{a-c}=1\)

\(\Leftrightarrow a+c=a-c\Leftrightarrow a+c-a+c=0\Leftrightarrow2c=0\Leftrightarrow c=0\)(đpcm)

Bright Star
2 tháng 8 2016 lúc 19:31

cảm ơn nhìu

Trần Đại Hào
9 tháng 9 2020 lúc 17:57

phần trên bài giải của bạn đúng nhưng đến phía dưới thì bạn ghi sai thành ra sai đáp án: đáng lẻ phải bằng 2c/-2c=-1

Khách vãng lai đã xóa
Trần Chí Công
Xem chi tiết
Moon
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết

1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b 
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a ) 
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c) 
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a) 
= b ( a-b)(a-c) - c ( a-b)(c-a) 
= ( b-c)(a-b)(a-c) 
=> P = (b-c)(a-b)(a-c) / abc 
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a 
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a) 
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c) 
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c) 
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a) 
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b) 
Q = - 3bc(a-b) + 3bc(c-a) 
Q = 3bc ( b+c-2a) 
Q = -9abc 
Suy ra => Q = 9abc / (a-b)(b-c)(c-a) 
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi) 
P*Q = 9 ( đpcm) 
**************************************... 
Chúc bạn học giỏi và may mắn

ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra

Chúc hok tốt

Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
17 tháng 4 2019 lúc 20:48

1) Đặt \(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)

Ta có:  \(P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{abc}\)

Xét \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\text{[}-\left(b-c\right)-\left(c-a\right)\text{]}+bc\left(b-a\right)+ca\left(c-a\right)\)

\(=bc\left(b-c\right)-ab\left(b-c\right)+ca\left(c-a\right)-ab\left(c-a\right)\)

\(=\left(b-c\right)\left(bc-ab\right)+\left(c-a\right)\left(ca-ab\right)=\left(c-b\right)\left(a-c\right)\left(a-b\right)\)

Vậy \(P=\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)}{abc}\)

Đặt \(a-b=z;b-c=x;c-a=y\) 

\(\Rightarrow\hept{\begin{cases}x-y=a+b-2c=-c-2c=-3c\\y-z=b+c-2a=-a-2a=-3a\\z-x=c+a-2b=-b-2b=-3b\end{cases}}\)

\(\Rightarrow3Q=\frac{-\left(y-z\right)}{x}+\frac{-\left(z-x\right)}{y}+\frac{-\left(x-y\right)}{z}\Rightarrow-3Q=\frac{y-z}{x}+\frac{z-x}{y}+\frac{x-y}{z}\)

Làm tương tự như rút gọn P, ta có :

\(\frac{y-z}{x}+\frac{z-x}{y}+\frac{x-y}{z}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}\)

\(\Rightarrow-3Q=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}=\frac{\left(-3a\right)\left(-3c\right)3b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\Rightarrow Q=\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(\Rightarrow PQ=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}\cdot\frac{-9abc}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}=9\)