Cho a+b-c/a+b+c=a-b-c/a-b+c trong đó b khác 0.Tìm c.
Cho tỉ lệ thức a+b+c/a+b-c =a-b+c/a-b-c trong đó b khác 0 . khi đó c=
Cho: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\). Chứng minh: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\) trong đó a, b, c đôi 1 khác nhau và khác 0
cho tỉ lệ thức a+b+c/a+b-c = a-b+c/a-b-c trong đó b khác 0 . chứng minh rằng c = 0
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1.\) (T/c dãy tỷ số băng nhau)
\(\Rightarrow a+b+c=a+b-c\Rightarrow2c=0\Rightarrow c=0\)
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
cho tỉ lệ thức
a+b+c/a+b-c = a-b+c/a-b-c trong đó b khác 0. chứng minh rằng c=0
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
Theo t/c dãy tỉ số=nhau,ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\frac{2b}{2b}=1\)
\(=>a+b+c=a+b-c=>c=-c=>c-\left(-c\right)=0\)
\(=>c+c=0=>2c=0=>c=0\)
Vậy c=0
cần 2 trường hợp:
- a+b=0
- a+b khác 0 là trường hợp đã làm
cho tỉ lệ thức a+b+c/a+b-c=a-b+c/a-b-c trong đó b khác o. Chứng minh c=0
Ta có \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)(dãy tỉ số bằng nhau)
Khi đó a + b + c = a + b - c
<=> c = - c
<=> 2 x c = 0
<=> c = 0(đpcm)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
\(\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)
\(a^2+ab+ac-ab-b^2-bc-ac-bc-c^2=a^2+ab-ac-ab-b^2+bc+ac+cb-c^2\)
\(a^2-b^2-c^2-2bc=a^2-b^2-c^2+2bc\)
\(-2bc=2bc\)
mà \(b\ne0\)
thì \(-2bc;2bc\)trái dấu
vậy để \(-2bc=2bc\)thì \(c=0\)
\(< =>ĐPCM\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) trong đó b khác 0.Chứng minh c=0
Ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+b+c+a-b+c}{a+b-c+a-b-c}=\frac{2a+2c}{2a-2c}=\frac{2\left(a+c\right)}{2\left(a-c\right)}=\frac{a+c}{a-c}\left(1\right)\)\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{a+c}{a-c}=1\)
\(\Leftrightarrow a+c=a-c\Leftrightarrow a+c-a+c=0\Leftrightarrow2c=0\Leftrightarrow c=0\)(đpcm)
phần trên bài giải của bạn đúng nhưng đến phía dưới thì bạn ghi sai thành ra sai đáp án: đáng lẻ phải bằng 2c/-2c=-1
cho TLThuc \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0.CMR c=0
cho a/b=b/c=c/d=d/a trong đó a+b+c+d khác 0 tính giá trị biểu thức M= 2a-b/c+d+ 2b-c/d+a + 2c-d/a+b + 2d -a/b+c
1. Cho a, b, c đôi một khác nhau và khác 0. Chứng minh rằng: nếu a+b+c=0 thì \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
2. Cho A= \(p^4\)trong đó p là số nguyên tố. Tìm các giá trị của p để tổng các ước dương của A là số chính phương
Cầu ng giúp
1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a )
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c)
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a)
= b ( a-b)(a-c) - c ( a-b)(c-a)
= ( b-c)(a-b)(a-c)
=> P = (b-c)(a-b)(a-c) / abc
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a)
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c)
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c)
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a)
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b)
Q = - 3bc(a-b) + 3bc(c-a)
Q = 3bc ( b+c-2a)
Q = -9abc
Suy ra => Q = 9abc / (a-b)(b-c)(c-a)
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi)
P*Q = 9 ( đpcm)
**************************************...
Chúc bạn học giỏi và may mắn
ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra
Chúc hok tốt
1) Đặt \(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b};Q=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
Ta có: \(P=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{abc}\)
Xét \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\text{[}-\left(b-c\right)-\left(c-a\right)\text{]}+bc\left(b-a\right)+ca\left(c-a\right)\)
\(=bc\left(b-c\right)-ab\left(b-c\right)+ca\left(c-a\right)-ab\left(c-a\right)\)
\(=\left(b-c\right)\left(bc-ab\right)+\left(c-a\right)\left(ca-ab\right)=\left(c-b\right)\left(a-c\right)\left(a-b\right)\)
Vậy \(P=\frac{\left(c-a\right)\left(b-c\right)\left(a-b\right)}{abc}\)
Đặt \(a-b=z;b-c=x;c-a=y\)
\(\Rightarrow\hept{\begin{cases}x-y=a+b-2c=-c-2c=-3c\\y-z=b+c-2a=-a-2a=-3a\\z-x=c+a-2b=-b-2b=-3b\end{cases}}\)
\(\Rightarrow3Q=\frac{-\left(y-z\right)}{x}+\frac{-\left(z-x\right)}{y}+\frac{-\left(x-y\right)}{z}\Rightarrow-3Q=\frac{y-z}{x}+\frac{z-x}{y}+\frac{x-y}{z}\)
Làm tương tự như rút gọn P, ta có :
\(\frac{y-z}{x}+\frac{z-x}{y}+\frac{x-y}{z}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}\)
\(\Rightarrow-3Q=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{xyz}=\frac{\left(-3a\right)\left(-3c\right)3b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\Rightarrow Q=\frac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\Rightarrow PQ=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}\cdot\frac{-9abc}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}=9\)