Giải pt
4x^2--9x+23=0
giải nhữg pt sau:
a) 4x^3 - 13x^2 +9x - 18 = 0
b) x^3 - 9x^2 +6x +16 = 0
c) x^3 - 4x^2 - 8x + 8 = 0
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
Giải PT: $(3x-1)\sqrt{3x-1}-4x^3+9x^2-7x=0$
Giải pt: \(4x^2+9x-9=0\)
giải tiếp
4x2+9x-9=0
a=4 ; b=9 ; c=-9
den ta= 92-4.4.(-9)=225 > 0
phương trình có 2 nghiệm phân biệt
x1=-9+căn 225/8=6/8=3/4
x2=-9-căn 225 /8=-3
giải pt
a/ \(2+\sqrt{3x+4}=x\)
b/ \(\sqrt{4x^2-4x+1}-\sqrt{9x^2}=0\)
a, \(2+\sqrt{3x+4}=x\)(ĐKXĐ: \(x>\frac{3}{4}\))
\(\Leftrightarrow\sqrt{3x+4}=x-2\)
\(\Leftrightarrow\left(\sqrt{3x+4}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow3x+4=x^2-4x+4\)
\(\Leftrightarrow x^2-4x+4-3x-4=0\)
\(\Leftrightarrow x^2-7x=0\)
\(\Leftrightarrow x\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(L\right)\\x=7\left(TM\right)\end{cases}}}\)
Vậy PT có nghiệm là \(x=7\)
b, \(\sqrt{4x^2-4x+1}-\sqrt{9x^2}=0\)
\(\Leftrightarrow\sqrt{4x^2-4x+1}=\sqrt{9x^2}\)
\(\Leftrightarrow\left(\sqrt{4x^2-4x+1}\right)^2=\left(\sqrt{9x^2}\right)^2\)
\(\Leftrightarrow4x^2-4x+1=9x^2\)
\(\Leftrightarrow9x^2-4x^2+4x-1=0\)
\(\Leftrightarrow5x^2+4x-1=0\)
\(\Leftrightarrow\left(x-\frac{1}{5}\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{5}=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(TM\right)\\x=-1\left(TM\right)\end{cases}}}\)
Vậy PT có nghiệm là \(x\in\left\{-1;\frac{1}{5}\right\}\)
giải pt: a) 9x2+5x+2=0
b) 5x2+4x-2=0
c) 2x3+7x2+7x+2=0
a)\(9x^2+5x+2=0\)
\(\Delta=5^2-4\cdot9\cdot2=-47< 0\)
Vô nghiệm
b)\(5x^2+4x-2=0\)
\(\Delta=4^2-4\cdot5\cdot\left(-2\right)=56\)
\(x_{1,2}=\frac{-4\pm\sqrt{56}}{10}\)
c)\(2x^3+7x^2+7x+2=0\)
\(\Rightarrow2x^3+6x^2+4x+x^2+3x+2=0\)
\(\Rightarrow2x\left(x^2+3x+2\right)+\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x^2+3x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left(x^2+2x+x+2\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[x\left(x+2\right)+\left(x+2\right)\right]\left(2x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
=>x=-1 hoặc x=-2 hoặc \(x=-\frac{1}{2}\)
Giải pt
2x+3+√(4x^2+9x+2)=2√(x+2)+√(4x+1)
kho vai chang h co m viet bua
giải pt: a, (x2-25)-(x-5)2=0
b, x3-4x2-9x+36=0
\(a,\left(x^2-25\right)-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5-x+5\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(\text{Vậy tập nghiệm của phương trình là }S=\left\{5\right\}\)
\(b,x^3-4x^2-9x+36=0\)
\(\Leftrightarrow\left(x^3-4x^2\right)-\left(9x-36\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-3=0\\x+3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=3\\x=-3\end{array}\right.\)
\(\text{Vậy tập nghiệm của phương trình là }S=\left\{4;\pm3\right\}\)
Giải PT sau :
\(3x\left(2+\sqrt{9x^2+3}\right)-\left(4x+1\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
giải pt sau a) sin2x.tan(x-pi/4)=0
b)cot9x=-tan(pi/9+9x)
c)cos(50*+4x)+sin3x=0
a/ ĐKXĐ: \(x\ne\frac{3\pi}{4}+k\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\tan\left(x-\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x-\frac{\pi}{4}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow sin3x=-cos\left(4x+50^0\right)\)
\(\Leftrightarrow sin3x=sin\left(4x-40^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-40^0=3x+k360^0\\4x-40^0=180^0-3x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=40^0+k360^0\\x=\frac{220^0}{7}+\frac{k360^0}{7}\end{matrix}\right.\)