Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thu Phương
Xem chi tiết
minh nguyet
16 tháng 7 2021 lúc 20:41

\(1.-3< -5+\sqrt{5}\)

\(2.-4>-2\sqrt{5}\)

\(3.-3\sqrt{5}< -6\)

Nguyễn Lê Phước Thịnh
16 tháng 7 2021 lúc 20:42

2) \(4=\sqrt{16}\)

\(2\sqrt{5}=\sqrt{20}\)

mà 16<20

nên \(-4>-2\sqrt{5}\)

3) \(3\sqrt{5}=\sqrt{45}\)

\(6=\sqrt{36}\)

mà 45>36

nên \(-3\sqrt{5}< -6\)

弃佛入魔
16 tháng 7 2021 lúc 20:44

1)Ta có \(-3=-\sqrt{9}>-5+\sqrt{5}\)

2)Ta có \(-2\sqrt{5}=(-\sqrt{20})<-4=(-\sqrt{16})\)

3)Ta có \(-3\sqrt{5}=(-\sqrt{45})<-6=-\sqrt{36}\)

b. ong bong
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 20:21

undefined

hung
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 22:35

Bài 6: 

a: \(15=\sqrt{225}>\sqrt{200}\)

b: \(27=9\sqrt{9}>9\sqrt{5}\)

c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)

Hồ Xuân Hùng
Xem chi tiết
Nguyễn Đức Trí
25 tháng 7 2023 lúc 10:37

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

Nguyễn Đức Trí
25 tháng 7 2023 lúc 10:44

Bạn xem lại đề 2, phần mẫu của N

Hồ Xuân Hùng
25 tháng 7 2023 lúc 21:25

@Nguyễn Đức Trí: Đề bài nó như vậy mà

Lê Kiều Trinh
Xem chi tiết
Ricky Kiddo
12 tháng 7 2021 lúc 15:40

a) 1,2+3.1,3=5,1

b) 0,2+2.0,5=1,2

 

Ricky Kiddo
12 tháng 7 2021 lúc 15:43

a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)

 

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:57

Bài 1: 

a) \(\sqrt{1.44}+3\sqrt{1.69}=1.2+3\cdot1.3=1.2+3.9=5.1\)

b) \(\sqrt{0.04}+2\cdot\sqrt{0.25}=0.2+2\cdot0.5=1.2\)

 

Vũ Thu Hiền
Xem chi tiết
Ngô Chi Lan
26 tháng 8 2020 lúc 10:19

B2:

3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)

\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

Khách vãng lai đã xóa
Lê Kiều Trinh
Xem chi tiết
An Thy
12 tháng 7 2021 lúc 15:56

a) Ta có: \(2=\sqrt{4}\)

Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)

b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)

Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)

c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)

\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)

Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)

\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)

phan thị minh anh
Xem chi tiết
nguyễn thị mai anh
18 tháng 7 2016 lúc 22:41

\(tacó:...\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}>\frac{1}{3.2}=\frac{1}{\left(1+2.1\right).2.1}\) 

\(\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}>\frac{1}{5.4}=\frac{1}{\left(1+2.2\right).2.2}\) 

\(\frac{1}{7.\left(\sqrt{3}+\sqrt{4}\right)}>\frac{1}{7.6}=\frac{1}{\left(1+2..3\right).2.3}\) 

....

\(\frac{1}{49.\left(\sqrt{48}+\sqrt{49}\right)}>\frac{1}{49.48}=\frac{1}{\left(1+2.48\right).2.48}\) 

cộng vế theo vế ta đươc S =\(\frac{1}{\left(1+2.1\right).2}+\frac{1}{\left(1+2.2\right).2.2}+...+\frac{1}{\left(1+2.48\right).48.2}\)

\(=\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{10}+\frac{1}{21}+\frac{1}{36}+...+\frac{1}{4656}\right)\)  <  \(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4656}\right)\)

mà lại có : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+..+\frac{1}{4656}\) 

=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9312}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{96.97}\) 

             = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{97}=\frac{1}{2}-\frac{1}{97}=\frac{95}{194}\)  

vậy S < \(\frac{95}{194}\) 

mà \(\frac{95}{194}< \frac{3}{7}\) 

=> S < \(\frac{3}{7}\)

KẾT LUẬN  : S <\(\frac{3}{7}\)

 

 

Bống
Xem chi tiết