Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Vy
Xem chi tiết
Thanh Hoàng Thanh
2 tháng 1 2022 lúc 21:11

Xét (O; R):

AB là tiếp tuyến; B là tiếp điểm (gt).

=> OB vuông góc AB (Tính chất tiếp tuyến).

=> Tam giác ABO vuông tại B.

=> A; B; O thuộc đường tròn đường kính OA. (1)

Xét (O; R):

AC là tiếp tuyến; C là tiếp điểm (gt).

=> OC vuông góc AC (Tính chất tiếp tuyến).

=> Tam giác ACO vuông tại C.

=> A; C; O thuộc đường trong đường kính AO. (2)

Từ (1); (2) => A; B; O; C cùng thuộc đường tròn đường kính AO (đpcm).

Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 21:12

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 10:18

góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

góc A chung

góc NBD=góc AEB

=>ΔABD đồng dạg vơi ΔAEB

=>AB/AE=AD/AB=BD/EB

Chứng minh tương tự, ta được: ΔACD đồng dạng với ΔAEC

=>AC/AE=CD/CE

mà AB=AC

nên AD/AB=AD/AC

=>BD/BE=CD/CE

=>BD*CE=BE*CD

góc M chung

góc MCN=góc MBC

=>ΔMCN đồng dạng với ΔMBC

=>MC/MB=MN/MC

=>MB*MN=MC^2=MA^2

=>MA/MB=MN/MA

=>ΔMAN đồng dạng với ΔMBA

=>góc MAN=góc MBA

=>BC là tiếp tuyến của (K)

=>BC vuông góc CK

Hue Do
Xem chi tiết
Nguyen Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2023 lúc 0:18

a: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB và OH là phân giác của góc AOB

Xét ΔOAM và ΔOBM co

OA=OB

góc AOM=góc BOM

OM chung

Do đó: ΔOAM=ΔOBM

=>góc OBM=90 độ

=>MB là tiếp tuyến của (O)

b: Xet ΔMAD và ΔMCA có

góc MAD=góc MCA

góc AMD chung

Do đó: ΔMAD đồng dạng với ΔMCA

=>MA/MC=MD/MA

=>MA^2=MC*MD=MH*MO

Đức Anh Lê
Xem chi tiết
Đàm Tùng Vận
Xem chi tiết
C H I
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 23:08

Sửa đề: góc ADM=1/2*góc COB

Xét (O) có

MA,MB là tiếp tuyến

nên OM là phân giác của góc AOB

=>gócAOM=góc BOM

=>góc AOC=góc BOC

=>sđ cung AC=sđ cung BC

mà góc ADM=1/2*sđ cung AC

nên góc ADM=1/2*góc COB

pansak9
Xem chi tiết
Alice
17 tháng 11 2023 lúc 20:40

loading...

Thanh Mai
Xem chi tiết

Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O

Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE

Hay OA là trung trực của BE

\(\Rightarrow AB=AE\)

Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)

\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)

loading...

PHAM HƯƠNG
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2022 lúc 9:43

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)