Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 22:39

a) Thay m=-2 vào phương trình, ta được:

\(x^2-\left(-x\right)-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

a=1; b=1; c=-2

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)

ĐỖ NV1
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 19:34

Δ=(2m-2)^2-4(m^2+m-2)

=4m^2-8m+4-4m^2-4m+8

=-12m+12

Để phương trình có hai nghiệm thì -12m+12>=0

=>m<=1

x1^2=6-x2^2-x1x2

=>(x1+x2)^2-2x1x2+x1x2=6

=>(x1+x2)^2-x1x2=6

=>(2m-2)^2-2(m^2+m-2)-6=0

=>4m^2-8m+4-2m^2-2m+4-6=0

=>2m^2-10m+2=0

=>\(m=\dfrac{5\pm\sqrt{21}}{2}\)

Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2023 lúc 22:03

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

Hải Yến Lê
Xem chi tiết
Dưa Hấu
11 tháng 7 2021 lúc 14:55

undefined

HT2k02
11 tháng 7 2021 lúc 14:55

a) Với m = -3 phương trình trở thành

\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)

b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)

\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)

Ta có : 

\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)

Nguyễn Huy Tú
11 tháng 7 2021 lúc 14:59

undefined

ĐỖ NV1
Xem chi tiết
YangSu
23 tháng 4 2023 lúc 13:30

\(x^2-2\left(m+1\right)x+4m-3=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_`+x_2=-\dfrac{b}{a}=2\left(m+1\right)=2m+2\\x_1x_2=\dfrac{c}{a}=4m-3\end{matrix}\right.\)

Ta có :

\(x_1^2x_2+x_1x_2^2=4\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)-4=0\)

\(\Leftrightarrow\left(4m-3\right)\left(2m+2\right)-4=0\)

\(\Leftrightarrow8m^2+8m-6m-6-4=0\)

\(\Leftrightarrow8m^2+2m-10=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{5}{4}\end{matrix}\right.\)

Nguyễn Anh
Xem chi tiết
Hoàng Thị Lan Hương
9 tháng 8 2017 lúc 15:07

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

James Pham
Xem chi tiết
Đào Tùng Dương
25 tháng 2 2022 lúc 22:33

undefined

ILoveMath
25 tháng 2 2022 lúc 22:35

\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)

\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)

Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)

\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)

Bmin=-168\(\Leftrightarrow\)m=-16

 

Eros Starfox
Xem chi tiết
YangSu
20 tháng 1 2023 lúc 11:08

\(x^2+3x+m-1=0\left(1\right)\)

Thay \(m=3\) vào \(\left(1\right)\)

\(\Rightarrow x^2+3x+3-1=0\)

\(\Rightarrow x^2+3x+2=0\)

\(\Rightarrow x^2+x+2x+2=0\)

\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy \(S=\left\{-2;-1\right\}\) khi \(m=3\)

....
Xem chi tiết
Trên con đường thành côn...
12 tháng 8 2021 lúc 11:49

undefined

Harry Poter
12 tháng 8 2021 lúc 11:51

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

Trên con đường thành côn...
12 tháng 8 2021 lúc 12:13

Câu c:

undefined

Tho Nguyễn Văn
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2023 lúc 21:19

\(ac=-12< 0\) nên pt luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=-12\end{matrix}\right.\)

\(x_1^2-x_2^2-14\left(m+1\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)-14\left(m+1\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right).2\left(m+1\right)-14\left(m+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=-1\\x_1-x_2=7\left(1\right)\end{matrix}\right.\)

Xét (1), kết hợp với Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1-x_2=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{2}\\x_2=\dfrac{2m-5}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=-12\Leftrightarrow\left(\dfrac{2m+9}{2}\right)\left(\dfrac{2m-5}{2}\right)=-12\)

\(\Leftrightarrow4m^2+8m+3=0\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(m=\left\{-1;-\dfrac{3}{2};-\dfrac{1}{2}\right\}\)