CMR: 2 số 2.n+1 và 3.n+1 luôn nguyên tố cùng nhau với n thuộc N
CMR: 2 số 2.n+1 và 3.n+1 luôn nguyên tố cùng nhau với mọi n thuộc N
gọi d là UC(2n+1;3n+1)
ta có 2n+1 chia hết cho d=>3(2n+1) chia hết cho d hay 6n+3 chia hết cho d
3n+1 chia hết cho d =>2(3n+1) chia hết cho d hay 6n+2 chia hết cho d
(2n+1)-(3n+1) chia hết cho d=>(6n+3)-(6n+2) chia hết cho d hay 1 chia hết cho d
=> d thuộc U(1)={1}
=> d =1
=> UCLN(2n+1;3n+1)=1=> 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
tick nha!!!!!!!!!!
Bài 2: CMR
a,7n+10 và 5n+7 là 2 số nguyên tố cùng nhau (n thuộc N)
b,2n+1 và 6n+5 là 2 số nguyên tố cùng nhau ( n thuộc N )
c,n+1 và 3n+4 là 2 số nguyên tố cùng nhau ( n thuộc N )
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
CMR: 2.n+1 và 2.n+3 (n thuộc N) là 2 số nguyên tố cùng nhau
Gọi ƯCLN ( 2n+1 ; 2n+3 ) = d ( d là số tự nhiên )
=> 2n+1 chia hết cho d ; 2n+3 chia hết cho d
=> 2n+3- (2n+1) chia hết cho d
=> 2 chia hết cho d
=> d= 1;2
Vì 2n+1; 2n+3 là các số lẻ
=> 2n+1; 2n+3 không chia hết cho 2
= > d=1
=> ƯCLN ( 2n+1 ; 2n+3 )=1
=> 2.n+1 và 2.n+3 là 2 số nguyên tố cùng nhau
Cho a=1+2+3+4+...+n và b=2.n+1 với n thuộc N,n lớn hơn hoặc bằng 2
CMR:2 số a,b nguyên tố cùng nhau
CMR
2 số 3n+1 và 4n+1 nguyên tố cùng nhau với n thuộc N
gọi d là UC(3n+1;4n+1)
=> 3n+1 chia hết cho d=> 4(3n+1) chia hết cho d hay 12n+4 chia hết cho d
4n+1 chia hết cho d=>3(4n+1) chia hết cho d hay 12n+3 chia hết cho d
=>(12n+4)-(12n+3) chia hết cho d hay 1 chia hết cho d
=> d=1
vậy 3n+1 và 4n+1 chia hết cho d
tick nha!!!!!!!
CMR: n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N
CMR nếu 2 số m,n nguyên tố cùng nhau ( m,n thuộc N )
thì luôn tìm được 1 số k sao cho mk-1 chia hết cho n
CMR 3n+1 và 4n+1 ( n thuộc N) là 2 số nguyên tố cùng nhau
gọi UCLN(3n+1;4n+1) là d
=> 3n+1 chia hết cho d =>4(3n+1) chia hết cho d =>12n+4 chia hết cho d
=>4n+1 chia hết cho d =>3(4n+1) chia hết cho d =>12n+3 chia hết chi d
=>(12n+4)-(12n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(3n+1;4n+1)=1
=>... nguyên tố cùng nhau
Cho n thuộc N,CMR : 2n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau .
Giải:
Gọi \(d=UCLN\left(2n+1;3n+1\right)\)
Ta có: \(2n+1⋮d\Rightarrow3\left(2n+1\right)⋮d\Rightarrow6n+3⋮d\)
\(3n+1⋮d\Rightarrow2\left(3n+1\right)⋮d\Rightarrow6n+2⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow UCLN\left(2n+1;3n+1\right)=1\)
\(\Rightarrow2n+1\) và 3n + 1 là 2 số nguyên tố cùng nhau
Vậy...