Chứng minh đa thức sau vô nghiệm:
x2-x+2
Giúp mình vs.Tks nhìu!!!
Bài 1: Tìm đa thức M biết : M-3xyz+5x2-7xy+9=6x2+xyz+2xy+3-y2
Bài 2: Chứng minh đa thức sau vô nghiệm :
a)ax2+2x+3 b)x2+4x+6
Bài 3: Cho đa thức P(x)= ax4+bx3+cx2+dx+e, biết P(1)=P(-1) , P(2)=P(-2).
Chứng minh P(x)=P(-x) với mọi x
( giúp mình nha cảm ơn mọi người aa<3 )
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
Chứng minh rằng đa thức sau vô nghiệm: R(x)=x^8-x^5+x^2-x+1
Giúp mình nhanh nha, sắp thi rùi!!!
Chứng minh rằng đa thức sau vô nghiệm: R(x)=x^8-x^5+x^2-x+1
Giúp mình nhanh nha, sắp thi rùi!!!
Giả sử đa thức R(x) tồn tại một nghiệm n nào đó, n là số thực
Khi đó: R(x) = x^8 -x^5 + x^2 -x +1 = 0
(x^8 + x^2 ) -( x^5 + x) = -1 (**)
Vì (x^8 + x^2 ) > ( x^5 + x) nên (x^8 + x^2 ) -( x^5 + x) luôn lớn hơn 0 trái với (**)
Vậy đa thức R(x) vô nghiệm
Ta có: x^8-x^5+x^2-x+1 = (x+x^2+x^5)-x^5+x^2-x+1 = (x^5-x^5)+(x^2+x^2)+(x-x)+1 = 0+2x^2+0+1 = 2x^2+1
Vì 2x^2 \(\ge\) 0 nên 2x^2+1 \(\ge\) 1
Vậy R(x) không có nghiệm
Chúc bạn hoc tốt! k mik nha
Chứng minh đa thức x2+x+1 vô nghiệm
f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)
=>f(x)≥\(\dfrac{3}{4}\)
=>đa thức trên vô nghiệm
Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:
Xét x≥0 thì x+1>0
x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0 (1)
Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0 (2)
Xét x≤-1 thì x<0 và x+1≤0. Do đó
x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0 (3)
Từ (1), (2), (3)=> đa thức f(x) vô nghiệm
`***`:Cách khác bạn dưới
`x^2+x+1=0`
`Delta=b^2-4ac`
`=1-4=-4<0`
`=>` pt vô no
hãy chứng minh đa thức sau là vô nghiệm x2+5x+9
\(\text{∆}=5^2-4.9\)
\(=25-36=-11< 0\)
⇒ phương trình vô nghiệm
ta có x2 ≥0
5x≥0
mà 9 > 0
\(=>x^2+5x+9>0\)
hay chứng tỏ đa thức vô nghiệm
Ta có x2+5x luôn lớn hơn hoặc bằng 0 với mọi x
=>x2+5x +9 lớn hơn 0 với mọi x
=>Đa thức trên vô nghiệm
Chứng tỏ đa thức sau vô nghiệm:
\(A\left(x\right)=2x^2-6x+2020\)
Giúp mình với ạ!
\(\text{∆}'=3^2-2.2020\)
\(=-4031< 0\)
⇒ phương trình vô nghiệm
Vì 2x^2-6x > 0 với mọi x
=> 2x^2-6x+2020 > 0+2020 với mọi x
=> 2x^2-6x+2020 > 2020 với mọi x
=> A(x) > 0 ( khác 0 )
=> A(x) vô nghiệm
Chứng minh đa thức vô nghiệm: 4x^2 - 4x +2015
Giúp mình với :(
Ta có : \(4x^2-4x+2015\)
\(=4x^2-2x-2x+1+2014=\left(4x^2-2x\right)-\left(2x-1\right)+2014\)
\(=2x\left(2x-1\right)-\left(2x-1\right)+2014\)
\(=\left(2x-1\right)\left(2x-1\right)+2014=\left(2x-1\right)^2+2014\)
Vì \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+2014>0\forall x\)
=> Đa thức 4x2 - 4x +2015 vô nhiệm (đpcm)
chứng minh đa thức sau vô nghiệm : \(( x - 4 )^2 + ( x + 5 )^2\)
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
Chứng minh đa thức 2x² - 3x+ 5 vô nghiệm giúp mình với ạ
2x^2-3x+5
=2(x^2-3/2x+5/2)
=2(x^2-2*x*3/4+9/16+31/16)
=2(x-3/4)^2+31/8>=31/8>0 với mọi x
=>2x^2-3x+5 không có nghiệm