Cho n số thực \(x_1;x_2;x_3;...;x_n\left(n\ge3\right)\)
\(CMR:max\left\{x_1;x_2;x_3;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Viết chương trình tính trung bình cộng n số thực \(x_1,x_2,x_3,...,x_n\) (các số n và\(x_1,x_2,x_3,...,x_n\) được nhập vào từ bàn phím). Sử dụng lệnh For...do.
Program HOC24;
var i,n: integer;
x: array[1..1000] of real;
tbc: real;
begin
write('Nhap n: '); readln(n);
for i:=1 to n do
begin
write('x[',i,']='); readln(x[i]);
end;
tbc:=0;
for i:=1 to n do tbc:=tbc+x[i];
tbc:=tbc/n;
write('Trung binh cong la: ',tbc:6:2);
readln
end.
cho các số thực dương x1>(=)x2>(=)x3>(=)...>(=)xn
chứng minh rằng:
\(\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...+\frac{x_n+x_1}{2}\le\frac{x_1+x_2+x_3}{3}+\frac{x_2+x_3+x_4}{3}+...+\frac{x_n+x_1+x_2}{3}\)
Nhìn nó tưởng khủng hóa ra đơn giản lắm :D
Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn
Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn
=> VT = VP. đpcm
Lão Linh mới xét đến điều kiện dấu "=" xảy ra
Thế còn điều kiện "<" vứt đâu?
nếu nó mà dễ thế thì mình đã ko hỏi rồi,linh à
Chứng minh rằng với các số thực dương \(x_1,x_2,...,x_n\)ta có:
\(\frac{x_1}{x_2+x_n}+\frac{x_2}{x_3+x_1}+\frac{x_3}{x_2+x_4}+...+\frac{x_n}{x_{n-1}+x_1}\ge2,\forall n\ge4\).
P/s: chứng minh bằng quy nạp
Với \(n=4\) bđt \(\Leftrightarrow\)\(\frac{x_1}{x_4+x_2}+\frac{x_2}{x_1+x_3}+\frac{x_3}{x_2+x_4}+\frac{x_4}{x_3+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_1^2}{x_4x_1+x_1x_2}+\frac{x_2^2}{x_1x_2+x_2x_3}+\frac{x_3^2}{x_2x_3+x_3x_4}+\frac{x_4^2}{x_3x_4+x_4x_1}\ge2\) (1)
\(VT_{\left(1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2\left(x_1x_2+x_2x_3+x_3x_4+x_4x_1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2.\frac{\left(x_1+x_2+x_3+x_4\right)^2}{4}}=2\)
Giả sử bđt đúng đến n=k hay \(\frac{x_1}{x_k+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}\ge2-\frac{x_1}{x_k+x_2}-\frac{x_k}{x_{k-1}+x_1}\)
Với n=k+1, cần cm \(\frac{x_1}{x_{k+1}+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_{k+1}}+\frac{x_{k+1}}{x_k+x_1}\ge2\)
hay \(\frac{x_1}{x_{k+1}+x_2}-\frac{x_1}{x_k+x_2}+\frac{x_k}{x_{k-1}+x_{k+1}}-\frac{x_k}{x_{k-1}+x_1}+\frac{x_{k+1}}{x_k+x_1}\ge0\) (2)
giả sử \(x_k=max\left\{a_1;a_2;...;a_{k+1}\right\}\)
\(VT_{\left(2\right)}=\frac{x_1\left(x_k-x_{k+1}\right)}{\left(x_k+x_2\right)\left(x_{k+1}+x_2\right)}+\frac{x_k\left(x_1-x_{k+1}\right)}{\left(x_{k-1}+x_1\right)\left(x_{k-1}+x_{k+1}\right)}+\frac{x_{k+1}}{x_k+x_1}>0\)
nhầm, chỗ giả sử là \(x_{k+1}=min\left\{x_1;x_2;...;x_{k+1}\right\}\)
cho các số thực dương x1>(=)x2>(=)x3>(=)...>(=)xn
chứng minh rằng:
\(\frac{x_1+x_2}{2}+\frac{x_2+x_3}{2}+...+\frac{x_n+x_1}{2}\le\frac{x_1+x_2+x_3}{3}+\frac{x_2+x_3+x_4}{3}+...+\frac{x_n+x_1+x_2}{3}\)
Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath
Cho các số thực dương x1, x2, ..., xn. Chứng minh rằng
\(\frac{\sqrt{x_1^2-1}}{x_2}+\frac{\sqrt{x_2^2-1}}{x_3}+...+\frac{\sqrt{n_{n-1}^2-1}}{x_n}+\frac{\sqrt{x_n^2-1}}{x_1}\le\frac{n\sqrt{2}}{2}\)
Cho các số thực không âm \(x_1,x_2,x_3.....x_9\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2+x_3+...+x_9=10\\x_1+2x_2+3x_3+...+9x_9=18\end{matrix}\right.\)
Chứng minh rằng \(1.19x_1+2.18x_2+3.17x_3+...+9.11x_9\ge270\)
giúp :)
Cho hàm số y=\(-x^2\) có đồ thị là (P) và hàm số y=x-2 có đồ thị là (d).
Tìm m sao cho đường thẳng (d'): y=mx-4 (với m là tham số thực) và (P) cắt nhau tại hai điểm có hoành độ \(x_1\)\(x_2\) thỏa mãn: (\(x_1\)-\(x_2\))2 -\(x_1\)-\(x_2\)=18
- Phương trình hoành độ giao điểm của (P) và (d'):
\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)
\(a=1;b=m;c=-4\)
\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)
Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)
\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)
\(\Leftrightarrow m^2+m-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)
Vậy m=4 hay m=-3.
Cho dãy số thực sắp xếp thứ tự : \(x_1\le x_2\le x_3\le...\le x_{192}\) thỏa mãn :
\(\left\{{}\begin{matrix}x_1+x_2+x_3+...+x_{192}=0\\\left|x_1\right|+\left|x_2\right|+\left|x_3\right|+...+\left|x_{192}\right|=2013\end{matrix}\right.\)
CMR : \(x_{192}-x_1\ge\dfrac{2013}{96}\) (Giải cũng được, không giải cũng được)
tìm tất cả các số thực \(x_1,x_2,...,x_{2005}\) thỏa mãn
\(\sqrt{x_1-1}+2\sqrt{x_2-2^2}+...+2005\sqrt{x_{2005}-2005^2}=\dfrac{1}{2}\left(x_1+x_2+...+x_{2005}\right)\)
Ta có: \(k\sqrt{x_k-k^2}\le\dfrac{1}{2}\left(k^2+x_k-k^2\right)=\dfrac{1}{2}x_k\)
\(\Rightarrow\sum\limits^{2005}_{k=1}k.\sqrt{x_k-k^2}\le\dfrac{1}{2}\left(x_1+x_2+...+x_{2005}\right)\)
Dấu "=" xảy ra khi:
\(k=\sqrt{x_k-k^2}\Leftrightarrow x_k=2k^2\) hay \(\left\{{}\begin{matrix}x_1=2.1^2=1\\x_2=2.2^2=8\\....\\x_{2005}=2.2005^2\end{matrix}\right.\)