Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Dũng An
Xem chi tiết
Lê Minh Triết
Xem chi tiết
Hoàng Thị Ánh Phương
6 tháng 3 2020 lúc 16:16

Bài 1 :

Với x , y > ta chứng minh :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng vào bài toán ta có :

\(\frac{1}{a+b+2c}=\frac{1}{a+c+b+c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{4ab}{a+b+2c}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)

Tương tự ta cũng có :

\(\frac{4bc}{b+c+2a}\le\frac{bc}{a+b}+\frac{bc}{a+c};\frac{4ca}{c+a+2b}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)

Cộng 3 bất đẳng thức trên vế theo vế ta được :

\(4\left(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\right)\le\frac{bc+ca}{a+b}+\frac{ab+ca}{b+c}+\frac{ab+bc}{a+c}=c+a+b\)

\(\RightarrowĐpcm\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
Hoàng Thị Ánh Phương
6 tháng 3 2020 lúc 16:25

Bài 2 :

\(Q=\frac{1}{a^2+b^2}+\frac{2102ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)

Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\) ta có :

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)

\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab.\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)

\(\Rightarrow Q\ge4+2+1+2012=2019\)

Dấu " = " xay ra khi \(a=b=c=\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 15:57

\(\frac{ab}{a+c+b+c}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\) ; \(\frac{bc}{b+c+2a}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\); \(\frac{ca}{c+a+2b}\le\frac{1}{4}\left(\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

Cộng vế với vế:

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}\right)=\frac{1}{4}\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

2.

\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

\(Q=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab+2012\)

\(Q=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}+2012\)

\(Q\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{4ab}{4ab}}+\frac{1}{4.\frac{1}{4}}+2012\)

\(Q\ge\frac{4}{1^2}+2+1+2012=2019\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn thị Ngọc Ánh
Xem chi tiết
Kudo Shinichi
20 tháng 2 2020 lúc 14:34

1 . 

Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)

Chia cả hai vế cho abc > 0 

\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)

Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)

Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)

\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)

\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)

\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)

Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)

Vậy GTNN của C là 17 khi a =2; b =1; c = 1

Khách vãng lai đã xóa
Kudo Shinichi
20 tháng 2 2020 lúc 14:49

2 . 

Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên 

\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)

\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tự ta có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)

\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)

Cộng vế theo vế (1), (2) và (3) ta được: 

\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)

Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)

\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)

Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Huỳnh Nhật Trung
Xem chi tiết
Đỗ Thu Minh 4a4
4 tháng 4 2020 lúc 20:46

Tìm trên mạng ý

Khách vãng lai đã xóa
IS
4 tháng 4 2020 lúc 21:25

\(a+\frac{1}{b}\le1=>ab+1\le b\)

\(b\le ab+1\ge2\sqrt{ab}=>\sqrt{b}\ge2\sqrt{a}=>\frac{b}{a}\ge4\)

\(T=\frac{ab}{a^2+b^2}=\frac{1}{\frac{a}{b}+\frac{b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{15b}{16a}}\)

áp dụng cô si 

\(\frac{a}{b}+\frac{b}{16a}\ge2\sqrt{\frac{ab}{16ab}}=\frac{1}{2}=>T\le\frac{1}{\frac{1}{2}+\frac{15}{16}.4}=\frac{4}{17}\)

\(=>MaxT=\frac{4}{17}\)

dấu = xảy ra khi

\(b=4a;\frac{a}{b}=\frac{b}{16a};ab=1\)

\(=>\hept{\begin{cases}4a^2=1\\b=4a\end{cases}=>\hept{\begin{cases}a=\frac{1}{2}\\b=2\end{cases}}}\)

Khách vãng lai đã xóa
Đàm Mạnh Dũng
Xem chi tiết
Nguyễn Anh Quân
8 tháng 11 2017 lúc 15:09

Có : (a-b)^2>=0

<=>a^2+b^2>=2ab       (2)

<=>a^2+b^2+2ab>=4ab

<=>(a+b)^2>=4ab (1) hay 4ab<=(a+b)^2    (3)

Với a,b > 0 thì chia hai vế (1) cho ab.(a+b) ta được : a+b/ab >= 4/a+b <=> 1/a + 1/b >= 4/a+b     (4)

Áp dụng bđt (2) ; (3) và (4)  thì VT = (4/a^2+b^2 + 1/2ab) + (4ab+1/4ab)+1/4ab

>= 4/(a^2+b^2+2ab) + 2\(\sqrt{\frac{4ab.1}{4ab}}\)\(\frac{1}{\left(a+b\right)^2}\)

= 4/(a+b)^2 + 2 + 1/(a+b)^2 >= 4/1 + 2 + 1/1 = 7 => ĐPCM 

Dấu "=" xảy ra <=> a=b ; a+b=1 <=> a=b=1/2

Trần Điền
Xem chi tiết
Ninh Thị Quỳnh Như
Xem chi tiết
do linh
Xem chi tiết
Nguyễn Hưng Phát
1 tháng 9 2018 lúc 20:30

\(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}\)

\(=a+b+\frac{2}{a+b}=a+b+\frac{4}{a+b}-\frac{2}{a+b}\)

\(\ge2\sqrt{\left(a+b\right).\frac{4}{a+b}}-\frac{2}{2\sqrt{ab}}=2\sqrt{4}-1=3\)(AM-GM)

Nên GTNN của B là 3 khi a=b=1

Uyên Hoàng
Xem chi tiết