Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Đức Trí
26 tháng 8 2023 lúc 8:44

\(A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\)

vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^4\ge0,\forall x\\\left|x-2y\right|\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}x-\dfrac{1}{4}=0\\x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{1}{8}\end{matrix}\right.\)

Vậy \(GTNN\left(A\right)=1\left(tạix=\dfrac{1}{4};y=\dfrac{1}{8}\right)\)

Kiều Vũ Linh
26 tháng 8 2023 lúc 8:40

Ta có:

(x - 1/4)⁴ ≥ 0 với mọi x ∈ R

(x - 2y)² ≥ 0 với mọi x, y ∈ R

(x - 1/4)⁴ + (x - 2y)² ≥ 0 với mọi x, y ∈ R

(x - 1/4)⁴ + (x - 2y)² + 1 ≥ 1 với mọi x, y ∈ R

Vậy GTNN của A là 1 khi x = 1/4 và y = 1/8

Nguyễn Chí Dũng
26 tháng 8 2023 lúc 9:20

Ta có:

(x - 1/4)⁴ ≥ 0 với mọi x ∈ R

(x - 2y)² ≥ 0 với mọi x, y ∈ R

(x - 1/4)⁴ + (x - 2y)² ≥ 0 với mọi x, y ∈ R

(x - 1/4)⁴ + (x - 2y)² + 1 ≥ 1 với mọi x, y ∈ R

Vậy GTNN của A là 1 khi x = 1/4 và y = 1/8

Lê Quốc Vương
Xem chi tiết
Nguyễn Nhật Minh
30 tháng 12 2015 lúc 12:14

Bài này thắng làm  rồi 

Tuấn Anh Nguyễn
Xem chi tiết
Võ Đông Anh Tuấn
24 tháng 8 2016 lúc 20:32

Có : \(\left|x-2\right|\ge0\)

        \(\left|x-10\right|\ge0\)

\(\Rightarrow\left|x-2\right|+\left|x-10\right|+4\ge4\)

Xét : \(\left[\begin{array}{nghiempt}x-2=0\Rightarrow x=2\Rightarrow A=0+8+4=12\\x-10=0\Rightarrow x=10\Rightarrow A=8+0+4=12\end{array}\right.\)

Vậy \(Min_A=12\) tại \(x=2;10\)

Trần Minh Hưng
24 tháng 8 2016 lúc 20:35

Vì |x-2| > 0

     |x-10| > 0

=> |x-2|+|x-10|+4 > 0+0+4

hay A > 4

=> GTNN của A bằng 4

Vậy giá trị nhỏ nhất của A là 4.

 

Ngô Châu Anh
Xem chi tiết
ST
28 tháng 4 2017 lúc 20:24

a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)

\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy SMin = 2014 tại x = -2 và y = 5

b, Đặt A = |x + 6| + |7 - x| 

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:

\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)

Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)

Vậy AMin = 13 tại \(-6\le x\le7\)

Nguyễn Thị Lan Hương
28 tháng 4 2017 lúc 20:14

Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất 

=> | x+2 | = 0 =>  x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5 

Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất 

Dark Knight Rises
Xem chi tiết
xát thủ vô hình
31 tháng 8 2017 lúc 19:39

524^89

Dark Knight Rises
Xem chi tiết
NGUYỄN PHÚC HUY
Xem chi tiết

Ta có: \(C=x^2+2xy+2y^2+4y+2y+5\)

\(=x^2+2xy+y^2+y^2+6y+9-4\)

\(=\left(x+y\right)^2+\left(y+3\right)^2-4\ge-4\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x+y=0\\ y+3=0\end{cases}\Rightarrow\begin{cases}x=-y\\ y=-3\end{cases}\Rightarrow\begin{cases}x=-\left(-3\right)=3\\ y=-3\end{cases}\)

Alexandra Alice
Xem chi tiết
Trang Huyen Trinh
Xem chi tiết