Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Hữu Vinh
Xem chi tiết
Đặng Ngọc Quỳnh
26 tháng 2 2021 lúc 6:00

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Bùi Hữu Vinh
26 tháng 2 2021 lúc 22:54

sai rồi nhé bạn 

Khách vãng lai đã xóa
Bùi Hữu Vinh
26 tháng 2 2021 lúc 23:05

làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng

Khách vãng lai đã xóa
Ánh Right
Xem chi tiết
Nguyễn Thành Trương
31 tháng 1 2020 lúc 20:48

Hỏi đáp Toán

Khách vãng lai đã xóa
cherry moon
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Phạm Việt Phú
4 tháng 2 2021 lúc 18:57

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

Khách vãng lai đã xóa
nguyễn phương thảo
4 tháng 2 2021 lúc 19:09

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Khách vãng lai đã xóa
Neet
Xem chi tiết
Akai Haruma
2 tháng 3 2017 lúc 0:34

Bài 3)

BĐT cần chứng minh tương đương với:

\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)

Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).

BĐT được viết lại như sau:

\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)

Ta nhớ đến hai bổ đề khá quen thuộc sau:

Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)

Cách CM rất đơn giản, Cauchy - Schwarz:

\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)

Tương tự với biểu thức còn lại và cộng vào thu được đpcm

Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

Cách CM: Quy đồng ta có đpcm.

Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)

\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:

\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)

\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)

\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)

\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)

\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )

Do đó \((\star)\) được cm. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c\)

P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.

Lightning Farron
2 tháng 3 2017 lúc 18:11

Bài 1:

Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)

Ta sẽ chứng minh nó là giá trị nhỏ nhất

Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)

\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)

\(\geq2((a-b)^2+(c-a)(c-b))\)

\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)

Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\)

\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)

BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"

Hung nguyen
2 tháng 3 2017 lúc 10:57

Câu 1/ Ta có

\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow1\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\)

\(\Leftrightarrow\sqrt{3}\le a+b+c< 3\)

Ta có: \(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2\left(a^2+b^2+c^2\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}-2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)\)

\(=a+b+c-2\left(a+b+c\right)^2+4\) (1)

Đặt \(a+b+c=x\left(\sqrt{3}\le x< 3\right)\)

Ta tìm GTNN của hàm số: \(y=-2x^2+x+4\)

\(\Rightarrow y'=-4x+1=0\)

\(\Rightarrow x=\frac{1}{4}=0,25\)

Thế x lần lược các giá trị \(\left\{\begin{matrix}x=0,25\\x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y=4,125\\y=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow y_{min}=-2+\sqrt{3}\) đạt cực trị tại \(x=\sqrt{3}\) (2)

Từ (1) và (2) ta suy ra GTNN của M là \(-2+\sqrt{3}\) tại \(a=b=c=\frac{1}{\sqrt{3}}\)

Lê Tài Bảo Châu
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 1 2020 lúc 21:49

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

Khách vãng lai đã xóa
Anh Phương
Xem chi tiết
tth_new
Xem chi tiết

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

Khôi Bùi
8 tháng 2 2019 lúc 20:21

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

Phan Nghĩa
23 tháng 8 2020 lúc 21:22

e cũng có 1 vài cách chứng minh khá là cổ điển ạ !

Sử dụng BĐT AM-GM ta có :

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=2.\frac{a}{2}=a\)

Bằng cách chứng minh tương tự :

\(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b;\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng theo vế các bđt cùng chiều ta được :

\(\frac{a^2}{c+b}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{2\left(a+b+c\right)}{4}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+\frac{a}{2}+\frac{b^2}{a+c}+\frac{b}{2}+\frac{c^2}{a+b}+\frac{c}{2}\ge a+b+c\)

\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{a+c}+\frac{c\left(a+b+c\right)}{b+a}\ge\frac{3}{2}\left(a+b+c\right)\)

\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(Q.E.D\right)\)

Khách vãng lai đã xóa
lý canh hy
Xem chi tiết
Đen đủi mất cái nik
12 tháng 10 2018 lúc 21:37

Ta c/m bđt

với \(x,y,z\ge1\) thì: \(\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\) (*)

dấu bằng xảy ra khi x=y=z

bđt (*) \(\Leftrightarrow\left(\frac{x+y}{1+z}+1\right)+\left(\frac{y+z}{1+x}+1\right)+\left(\frac{z+x}{1+y}+1\right)\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}+3\)

\(\Leftrightarrow\left(x+y+z+1\right)\left(\frac{1}{1+z}+\frac{1}{1+x}+\frac{1}{1+y}\right)\ge\frac{3+9\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\)

Ta có: \(1+x+y+z\ge1+3\sqrt[3]{xyz}\)(1)

Với \(x,y\ge1\) ta chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}}\)(2)

\(\Leftrightarrow\frac{2+\left(x+y\right)}{1+\left(x+y\right)+xy}\ge\frac{2}{1+\sqrt{xy}}\Leftrightarrow2+\left(x+y\right)+2\sqrt{xy}+\sqrt{xy}\left(x+y\right)\ge2+2\left(x+y\right)+2xy\)

\(\Leftrightarrow2\sqrt{xy}\left(1-\sqrt{xy}\right)+\left(x+y\right)\left(\sqrt{xy}-1\right)\ge0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\ge0\)

bđt trên luôn đúng =>DPCM

đợi mình làm vế sau nữa nhé tại máy lag nên làm đk đến đây thôi xíu nữa hoặc mai mik làm vế sau cho nhé

Đen đủi mất cái nik
12 tháng 10 2018 lúc 21:47

Với \(x,y,z\ge1\) ta chứng minh: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\) (3)

\(\Leftrightarrow P=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{4}{1+\sqrt[3]{xyz}}\)

Áp dụng kết quả (2) ta thu được:

\(P\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{z\sqrt[3]{xyz}}}\ge\frac{4}{1+\sqrt[4]{xyz\sqrt[3]{xyz}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

Từ (1) và (3) suy ra (*) đúng

Trở lại bài toán: ta được bđt đã cho tưởng đương với:

\(\frac{\frac{1}{b}+\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}+\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{a}+\frac{1}{b}}{1+\frac{1}{c}}\ge\frac{\frac{6}{\sqrt[3]{abc}}}{1+\frac{1}{\sqrt[3]{abc}}}\)

Do x,y,z\(\le1\Rightarrow\frac{1}{x},\frac{1}{y},\frac{1}{z}\ge1\). Áp dụng (*) suy ra điều phải chứng minh dấu bằng xảy ra khi a=b=c