Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phúc Long Nguyễn
Xem chi tiết
jane28
Xem chi tiết
Nguyen Khoi Nguyen
Xem chi tiết
Kiệt Nguyễn
1 tháng 3 2021 lúc 20:28

Theo giả thiết, ta có: \(2b-ab-4\ge0\Rightarrow2b\ge ab+4\ge4\sqrt{ab}\)

\(\Rightarrow\frac{b}{\sqrt{ab}}\ge2\Rightarrow\frac{b}{a}\ge4\)

Xét \(\frac{1}{T}=\frac{ab}{a^2+2b^2}=\frac{1}{\frac{a}{b}+\frac{2b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{31b}{16a}}\le\frac{1}{2\sqrt{\frac{1}{16}}+\frac{31}{16}.4}=\frac{4}{33}\)

\(\Rightarrow T\ge\frac{33}{4}\)

Đẳng thức xảy ra khi a = 1; b = 4

Khách vãng lai đã xóa
thục khuê nguyễn
Xem chi tiết
Lê An Bình
Xem chi tiết
Nguyễn Thị Quỳnh Như
18 tháng 4 2016 lúc 14:53

 Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)

Tương tự ta cũng có 

           \(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)

Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

Nguyễn Gia Huy
Xem chi tiết
Phùng Minh Quân
2 tháng 2 2020 lúc 15:29

Có: \(4=\left(a+b\right)^2-\left(b-1\right)^2\le\left(a+b\right)^2\)\(\Rightarrow\)\(a+b\ge2\)

\(P=\frac{\frac{a^4}{a}+\frac{b^4}{b}}{ab}\ge\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab}\ge\frac{\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{a+b}}{ab}=\frac{\left(a+b\right)\left(a+b\right)^2}{4ab}\ge\frac{2\left(2\sqrt{ab}\right)^2}{4ab}=2\)

"=" \(\Leftrightarrow\)\(a=b=1\)

Khách vãng lai đã xóa
Yim Yim
Xem chi tiết
Sam Trương (Kẻ Phàm Ăn)
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 6 2016 lúc 21:22

ab=10

Sam Trương (Kẻ Phàm Ăn)
2 tháng 6 2016 lúc 21:41

E cảm ơn. Nhưng mà em cần cách giải cơ :((

Cô Hoàng Huyền
2 tháng 6 2016 lúc 21:56

Do \(a=1-2b\Rightarrow ab=\left(1-2b\right)b=-2b^2+b=-2\left(b^2-\frac{b}{2}+\frac{1}{16}\right)+\frac{1}{8}=-2\left(b-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)

Vậy GTLN của ab là \(\frac{1}{8}\)khi \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{4}\end{cases}}\)

Chúc em học tốt ^^

Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà