tìm x của bất phương trình:\(\frac{2x-1}{x+3}\)\(\frac{ }{ }\)>1
a) Tìm tất cả nghiệm nguyên dương của bất phương trình : \(11x-7< 8x+7\)
b) Tìm tất cả nghiệm nguyên âm của bất phương trình \(\frac{x^2+2x+8}{2}-\frac{x^2-x+1}{6}>\frac{x^2-x+1}{3}-\frac{x+1}{4}\)
c)Tìm nghiệm nguyên nhỏ nhất của bất phương trình : \(2\left(3-x\right)-1,5\left(x-4\right)< 3-x\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
c)2(3-x)-1,5(x-4)<3-x
<--->6-2x-1,5x+6<3-x
<--->6+6-3<2x+1,5x-x
<--->9<2,5x
<--->3,6<x mà x la so nguyen nhỏ nhất
--->x=4
trong 2 bất phương trình sau đây , bất phương trình nào tương đương với bất phương trình 2x - 1 >= 0 , giải thích : 2x - 1 + \(\frac{1}{x-3}\) >=\(\frac{1}{x-3}\) và 2x - 1 - \(\frac{1}{x+3}\) >= - \(\frac{1}{x+3}\)
a,Giải phương trình sau : (2x + 3)(x-5)=42 +6x
b, Gải phương trình sau: \(\frac{x}{2x-6}-\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,Gải bất phương trình sau và biểu diễn nghiệm trên trục số : \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
giải phương trình:\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
giải bất phương trình: 2x+3<6-(3-4x)
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
giải bất phương trình
a.\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
b.\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
2.Giải phương trình
b.\(\frac{\left|2x-1\right|}{x-1}+1=\frac{1}{x-1}\)
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
Tìm giá trị nguyên của \(x\)thỏa mãn cả 2 bất phương trình :
\(\frac{2x+1}{6}-\frac{x-2}{9}>x-3\)và \(x-\frac{x-3}{4}\ge3-\frac{x-3}{12}\)
a) Giải bất phương trình:
\(\frac{x}{x-2}+\frac{x+2}{x}>2\)
b) Tìm \(x\in Z\)thỏa mãn cả 2 bất phương trình :
\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) và \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)
=> \(6x-4\ge5x+8\)
=> \(x-12\ge0\)
=> \(x\ge12\)
bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)
=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)
=> \(44-8x>18-6x\)
=> \(x< 13\)
Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)
a, \(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\) (Đk : \(x\ne\left(0;2\right)\))
=> \(2x^2-4>2x^2-4x\)
=> \(4x-4=4\left(x-1\right)>0\)
=> \(x>1\)(t/m)
1,Giai phương trình,bất phương trình:
a,\(x-\frac{2x+1}{2}-\frac{x+2}{3}>1\)\(1\)
\(x-\frac{2x+1}{2}-\frac{x+2}{3}>11\)
\(\Leftrightarrow\frac{6x}{6}-\frac{3.\left(2x+1\right)}{6}-\frac{2.\left(x+2\right)}{6}>11\)
\(\Leftrightarrow\frac{6x-6x-3-2x-4}{6}>11\)
\(\Leftrightarrow\frac{-2x-7}{6}>11\)
\(\Leftrightarrow-2x-7>66\)
\(\Leftrightarrow-2x>73\)
\(\Leftrightarrow x< \frac{-73}{2}\)
1,Gỉai phương trình,bất phương trình:
a,x-\(\frac{2x+1}{2}\)-\(\frac{x+2}{3}\)>1
b,\(\frac{x}{x-4}\)< và=1
c,\(\frac{2x-1}{x+2}\)> và=3
Giải bất phương trình sau :
\(x-1-\frac{x-1}{3}\le\frac{2x+3}{2}+\frac{x}{3}-1\)
Mong mọi người giúp ạ !