Cho phương trình x2-4x+1=0 .Tính giá trị biểu thức:
A=\(\sqrt{2x_1^4+8x_1+9}-5x_1\)
1) Tính giá trị biểu thức:
a)A=\(\sqrt{4+2\sqrt{3}}\)
b) B=\(\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
2) Giai phương trình: \(\sqrt{4x-12}+\sqrt{x-3}-\dfrac{1}{3}\sqrt{9x-27}=8\)
3)Tìm x: 2x2-4=8
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
Cho phương trình 4x^2-2√(10)x+1=0 có 2 no x1 và x2 . không giải pt hãy tính giá trị của biểu thức√(x1^4+8x2^2) +√(x2^4 +8x1^2)
\(\sqrt{_{ }}\)
Bạn tham khảo ở đây nhé
https://olm.vn/hoi-dap/detail/221533389558.html
Cho phương trình \(^{2^2-8x-5=0}\) không giải phương trình. Tính giá trị biểu
thức
D=\(\dfrac{5x_1-x_2}{x_1}-\dfrac{x_1-3x_2}{x_2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-5\end{matrix}\right.\)
\(D=5-\dfrac{x_2}{x_1}-\dfrac{x_1}{x_2}+3=8-\dfrac{x_1^2+x_2^2}{x_1x_2}=8-\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=8-\dfrac{\left(-4\right)^2-10}{5}=...\)
Tính giá trị của các biểu thức:
a) \(\dfrac{-3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\left(1+\sqrt{5}\right)^2}\)
b) \(\left(1+\dfrac{1}{tan^225^0}\right)sin^225^0-tan55^0.tan35^0\)
a) Ta có: \(-\dfrac{3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\cdot\left(1+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{2}\left(\sqrt{5}-2\right)+4\cdot\left(\sqrt{5}+1\right)\)
\(=\dfrac{-3}{2}\sqrt{5}+3+4\sqrt{5}+4\)
\(=\dfrac{5}{2}\sqrt{5}+7\)
b) Ta có: \(\left(1+\dfrac{1}{\tan^225^0}\right)\cdot\sin^225^0-\tan55^0\cdot\tan35^0\)
\(=\dfrac{\tan^225^0+1}{\tan^225^0}\cdot\sin25^0-1\)
\(=\left(\dfrac{\sin^225^0}{\cos^225^0}+1\right)\cdot\dfrac{\cos^225^0}{\sin^225^0}\cdot\sin25^0-1\)
\(=\dfrac{\sin^225^0+\cos^225^0}{\cos^225^0}\cdot\dfrac{\cos^225^0}{\sin25^0}-1\)
\(=\dfrac{1}{\sin25^0}-1\)
\(=\dfrac{1-\sin25^0}{\sin25^0}\)
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
Cho phương trình \(2x^2-3x-3=0\) có 2 nghiệm \(x_1,x_2\)
Tính giá trị biểu thức sau: B=\(x^2_1x_2+x_2^2x_1\)
Ptr có:`\Delta=(-3)^2-4.2.(-3)=33 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=3/2),(x_1.x_2=c/a=[-3]/2):}`
Ta có:`B=x_1 ^2 x_2+x_2 ^2 x_1`
`<=>B=x_1.x_2(x_1+x_2)`
`<=>B=[-3]/2 . 3/2=[-9]/4`
\(2x^2-3x-3=0\)
\(B=x_1^2x_2+x_2^2x_1=x_1x_2\left(x_1+x_2\right)\)
Theo hệ thức Vi -ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=\dfrac{-3}{2}\end{matrix}\right.\)
= \(\dfrac{-3}{2}.\dfrac{3}{2}=\dfrac{-9}{4}\)
Vậy \(B=x_1^2x_2+x_2^2x_1=\dfrac{-9}{4}\)
Gọi x1, x2 là nghiệm của phương trình 2x2 + 5x - 2 .Không giải phương trình, hãy tính giá trị của các biểu thức:
a) A = x1 + x2
b) B = \(\dfrac{1}{x_1}\) + \(\dfrac{1}{x_2}\)
c) C = x13 + x23
d) D = \(\dfrac{1}{x_1^4}\) + \(\dfrac{1}{x_2^4}\)
e) E = |x1 - x2|
Giải chi tiết chút giúp e ạ!!
a: A=x1+x2=-5/2
b: \(=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{2}:\left(-1\right)=\dfrac{5}{2}\)
c: \(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(-\dfrac{5}{2}\right)^3-3\cdot\dfrac{-5}{2}\cdot\left(-1\right)\)
\(=-\dfrac{125}{8}-\dfrac{15}{2}=\dfrac{-185}{8}\)
e: \(E=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(-\dfrac{5}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{25}{4}+4}=\dfrac{\sqrt{41}}{2}\)
Gọi x1 và x2 là 2 nghiệm của phương trình bậc hai : \(x^2-4x-1=0\).Không giải phương trình hãy tính giá trị biểu thức \(A=|x_1-2x_2|+\left|x_2-2x_1\right|\)
Gọi x 1 ; x 2 là nghiệm của phương trình − x 2 − 4 x + 6 = 0 . Không giải phương trình, tính giá trị của biểu thức N = 1 x 1 + 2 + 1 x 2 + 2
A. −2
B. 1
C. 0
D. 4
Phương trình: − x 2 − 4x + 6 = 0 có = ( − 4 ) 2 – 4.(− 1).6 = 40 > 0 nên phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = − 4 x 1 . x 2 = − 6
Ta có
N = 1 x 1 + 2 + 1 x 2 + 2 = x 1 + x 2 + 4 x 1 x 2 + 2 x 1 + x 2 + 4 = − 4 + 4 − 6 + 2. − 4 + 4
Đáp án: C