cmr với x,y thuộc N : 3X + 5Y CHIA HẾT CHO 7 KHI VÀ CHỈ KHI X+4Y CHIA HẾT CHO 7
CMR: Nếu 3x + 5y chia hết cho 7 thi x + 4y chia hết cho 7 và ngược lại (x;y thuộc N)
Cho 3x +5y chia hết cho 7. CMR x+4y chia hết cho 7 (x,y thuộc N) đếm ngược lại có đúng khôg?
nếu 3x + 5y chia hết cho bảy thì x,y thuộc ny
3x +5y chia hết cho 7
3x + 5y + 7y chia hết cho 7
3x + 12y chia hết cho 7
3(x + 4y) chia hết cho 7
(3 , 7) = 1
Vậy x + 4y chia hết cho 7
cho x,y thuộc N thoả mãn(3x+5y)(x+4y)chia hết cho 7.Chứng minh rằng (3x+5y)(x+4y) chia hết cho 49
Bạn tham khảo cái này: https://hoidap247.com/cau-hoi/330556
cho x,y thuộc N thoả mãn(3x+5y)(x+4y)chia hết cho 7.Chứng minh rằng (3x+5y)(x+4y) chia hết cho 48
hình như bn ghi lộn đề rồi thì phải
chia hết cho 49 mới đúng chứ
Bài 1: CMR: Tồn tại x,y \(\in\) N
a) x + 4y chia hết cho 13 khi và chỉ khi 10x + y chia hết cho 13
b) 2x + 3y chia hết cho 17 khi và chỉ khi 9x + 5y chia hết cho 17
CMR: với mọi x,y thì 5x^2 - 4y chia hết cho 23 khi và chỉ khi 3x^2 - 7y chia hết cho 23
Vì \(3x^2-7y⋮23\Leftrightarrow\left\{{}\begin{matrix}3x^2⋮23\\7y⋮23\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2⋮23\\y⋮23\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x^2⋮23\\4y⋮23\end{matrix}\right.\)
\(\Rightarrow5x^2-4y⋮23\)
cho 3x+5y chia hết cho 7. chứng minh rằng : x+4y chia hết cho 7(x, y thuộc N)điều ngược lại có đúng ko?
3x + 5y chia hết cho 7
3x + 5y +7y chia hết cho 7
3x + 12y chia hết cho 7
3(x + 4y) chia hết cho 7
( 3 , 7) = 1
Vậy x+ 4y chia hết cho 7
b) x + 4y chia hết cho 7
3(x + 4y) chia hết cho 7
3x + 12y chia hết cho 7
3x + 12y - 7y chia hết cho 7
3x + 5y chia hết cho 7
< = > Điều ngược lại đúng
Chứng minh rằng nếu x, y thuộc n thì: 3x+5y chia hết cho 19 khi và chỉ khi 8y+x chia hết cho 19