Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minamoto Shizuka
Xem chi tiết
Nobita Kun
5 tháng 2 2016 lúc 13:46

Xét abba

abba = 1001a + 110b = 11(91a + 10b) chia hết cho 11

Xét aaabbb:

aaabbb = 111000a + 111b = 37(3000a + 3) chia hết cho 37

Xét ababab

ababab = 101010a + 10101b = 7(14430a + 1443b) chia hết cho 7

Xét abab - baba

abab - baba = 1010a + 101b - 1010b - 101a = (1010a - 101a) - (1010b - 101b) = 909a - 909b = 909(a - b) chia hết cho 9

BACHHONGHEO
Xem chi tiết
Kẻ Bí Mật
23 tháng 4 2015 lúc 12:31

Ta có: aaa = a x 111 = a x 3 x 37 luôn luôn chia hết cho 37 

Câu này chắc chắn đúng lun đó bạn!

Cho mình 1 like nha!

nguyen ngoc thanh
Xem chi tiết
Legend Xerneas
Xem chi tiết
thien ty tfboys
26 tháng 10 2015 lúc 20:45

Goi 3 so tn lien tiep la a,a+1 va a+2 (a thuoc N)

Ta xet 3 truong hop ; 

Suy ra : a chia het cho 3 

Th2 : a chia cho 3 du 1 

Ta co : a=3q+1

a+2=3q+1+2

a+2=3q+3

a+2=3q+3.1

a+2=3.(q+1)

Suy ra :a+2 chia het cho 3

 TH3 :a chia cho 3 du 2

Ta co : a=3q+2

a+1=3q+2+1

a+1=3q+3

a+1=3q+3.1

a+1=3.(q+1)

Suy ra : a+1 chia het cho 3

 Vay trong 3 so tn lien tiep cho duy nhat 1 so chia het cho 3

Lê Tài Bảo Châu
Xem chi tiết

Gọi n số nguyên liên tiếp là k+1;k+2;k+3;...;k+nk+1;k+2;k+3;...;k+n

Ta cần chứng minh (k+1)(k+2)...(k+n)⋮n!(k+1)(k+2)...(k+n)⋮n!

Cách 1. Ta có (nk)∈Z,∀n,k∈Z(nk)∈Z,∀n,k∈Z

Mà (nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z(nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z nên ta có đpcm.

Cách 2. Ta có: vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)

Do đó (n+k)!⋮n!k!(n+k)!⋮n!k!, suy ra đpcm.

Chứng minh công thức ở trên:

Do [a+b]≥[a]+[b][a+b]≥[a]+[b] nên vp(n!+k!)=+∞∑i=1[n!+k!pi]≥+∞∑i=1[n!pi]++∞∑i=1[k!pi]=vp(n!)+vp(k!)vp(n!+k!)=∑i=1+∞[n!+k!pi]≥∑i=1+∞[n!pi]+∑i=1+∞[k!pi]=vp(n!)+vp(k!)

P/s: 2 cách này là như nhau nhưng ở cách 2 không cần biết đến số tổ hợp chập k của n phần tử (nk)(nk) nhưng lại cần biết vp(n)vp(n).

nguyen_phuong_linh
Xem chi tiết
shitbo
18 tháng 12 2018 lúc 19:20

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

Huyền Nhi
18 tháng 12 2018 lúc 19:24

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

nguyen ha tung chi
Xem chi tiết
The Lonely Cancer
17 tháng 12 2016 lúc 21:54

a) Nếu một trong hai số a và b là chẵn thì => a . b . ( a + b ) là một số chẵn => chia hết cho 2

   Nếu cả hai số a và b đều là số lẻ => a + b là một số chẵn = > a . b . ( a + b ) là một số chẵn => chia hết cho 2

  Nếu cả hai số a và b đều là số chẵn => a . b . ( a + b ) là một số chẵn => chia hết cho 2 

 Vậy với mọi trường hợp thfi a . b . ( a + b ) luôn chia hết cho 2

                            ( đpcm )

b) Để a + b không chia hết cho 2 => hai số a và b không cùng tính chẵn lẻ => thì một trong hai số là số chẵn

Khi một trong hai số a và b là chẵn thì tích a x b cũng sẽ là một số chẵn => a x b chia hết cho 2

Vậy nếu a + b không chia hết cho 2 thi tích a x b chia hết cho 2

                               ( đpcm )

nguyen ha tung chi
17 tháng 12 2016 lúc 22:01

ddpcm là j vậy bạn

Lê Tài Bảo Châu
Xem chi tiết
NGUYỄN ANH THƯ THCS SÔNG...
3 tháng 4 2019 lúc 5:44

Có 3 số => luôn chọn ra được 2 số  cùng tính chẵn lẻ

=> hiệu của chúng chia hết cho 2

=> đpcm

Lê Tài Bảo Châu
Xem chi tiết
Kudo Shinichi
17 tháng 7 2019 lúc 7:33

Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n

=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n) 

5n (n+1).(n+2)

do n (n=1) (n+2)chia hết cho 6

suy ra Achia hết cho 30(n thuộc z)