\(\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+....+\frac{15}{146\cdot150}\)
CỨU!
\(A=\frac{15}{90\times94}+\frac{15}{94\times98}+...+\frac{15}{146+150}\) = ?
\(\frac{15}{90\times94}\) + \(\frac{15}{94\times98}\)+ \(\frac{15}{98\times102}\)+ ... + \(\frac{15}{146\times150}\)
Đề bài là tính nhanh nếu có thể
Làm giúp mình với vì ngày mai mình đi học rôi
Cảm ơn các bạn nhiều nhé
15/90 × 94 + 15/94 × 98 + 15/98 × 102 + ... + 15/146 × 150
= 15/4 × (4/90×94 + 4/94×98 + 4/98×102 + ... + 4/146×150)
= 15/4 × (1/90 - 1/94 + 1/94 - 1/98 + 1/98 - 1/102 + ... + 1/146 - 1/150)
= 15/4 × (1/90 - 1/150)
= 15/4 × 1/30 × (1/3 - 1/5)
= 1/8 × 2/15
= 1/60
15/90*94+15/94*98+......+15/146*150
=\(\frac{15}{4}.\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)
=\(\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
=\(\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\)
=\(\frac{15}{4}.\frac{2}{450}\)
=\(\frac{1}{60}\)
\(dungthikkothithoithanks\)
\(\frac{15-\frac{15}{7}-\frac{15}{12}-\frac{15}{98}}{18-\frac{18}{7}-\frac{18}{12}-\frac{18}{98}}\)
\(\frac{15-\frac{15}{7}-\frac{15}{12}-\frac{15}{98}}{18-\frac{18}{7}-\frac{18}{12}-\frac{18}{98}}\)= \(\frac{15-15\left(\frac{1}{7}+\frac{1}{12}+\frac{1}{98}\right)}{18-18\left(\frac{1}{7}+\frac{1}{12}+\frac{1}{98}\right)}\)=\(\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}\)= \(\frac{15}{18}\)=\(\frac{5}{6}\)
\(\frac{15-\frac{15}{7}-\frac{15}{12}-\frac{15}{98}}{18-\frac{18}{7}-\frac{18}{12}-\frac{18}{98}}\)
\(\frac{15-\frac{15}{7}-\frac{15}{12}-\frac{15}{98}}{18-\frac{18}{7}-\frac{18}{12}-\frac{18}{98}}=\frac{15\left(1+\frac{1}{7}+\frac{1}{12}+\frac{1}{98}\right)}{18\left(1+\frac{1}{7}+\frac{1}{12}+\frac{1}{98}\right)}=\frac{15}{18}=\frac{5}{6}\)
Tính nhanh
\(A=\frac{15-\frac{15}{7}-\frac{15}{12}-\frac{15}{98}}{18-\frac{18}{7}-\frac{18}{12}-\frac{18}{98}}\)
A=15x(1/7-1/12-1/98)/18(1/7-1/12-1/98)
A=15/18
A=5/6
h nhe!!!
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}\)
\(A=\frac{15}{18}=\frac{5}{6}\)
\(A=\frac{15-\frac{15}{7}-\frac{15}{12}-\frac{15}{98}}{18-\frac{18}{7}-\frac{18}{12}-\frac{18}{98}}\)
\(\Rightarrow A=\frac{15\left(\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}\)
\(\Rightarrow A=\frac{15}{18}=\frac{5}{6}\)
mk làm chuẩn rồi nha
1) \(2x-\frac{4}{3}-\frac{4}{15}-\frac{4}{35}-\frac{4}{63}-\frac{4}{99}=\frac{15}{17}\)
2)\(\frac{10}{1\cdot2\cdot3}+\frac{10}{2\cdot3\cdot4}+\frac{10}{3\cdot4\cdot5}+.....+\frac{10}{100\cdot101\cdot102}\)
2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\frac{2575}{5151}\)
\(=2,499514657\)
Tính nhanh
\(A=\frac{15-\frac{15}{7}-\frac{15}{12}-\frac{15}{98}}{18-\frac{18}{7}-\frac{18}{12}-\frac{18}{98}}\)
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{18}\right)}=\frac{15}{18}\)
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}=\frac{15}{18}=\frac{5}{6}\)
So sánh:
a) A=\(\frac{15^{16}+1}{15^{17}+1}\)và B=\(\frac{15^{15}+1}{15^{16}+1}\)
b) A=\(\frac{100^{100}+1}{100^{90}+1}\)và B=\(\frac{100^{99}+1}{100^{98}+1}\)
a) \(A=\frac{15^{16}+1}{15^{17}+1}\)và\(B=\frac{15^{15}+1}{15^{16}+1}\)
ta có \(A=\frac{15^{16}}{15^{17}}\)và\(B=\frac{15^{15}}{15^{16}}\)
ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau
mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B
\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow A>B\)
\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)
+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)
\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
Vậy A<B
b)Đề sai
Chúc bạn học tốt