Cho phương trình ẩn x: \(x^{2}-(2m+1)x+m^{2}+2=0\). Tìm m để \(x_{1}+2x_{2}=4\)
Cho phương trình ẩn x: \(x^{2}-(2m+1)x+m^{2}+2=0\) Tìm m để \(x_{1}+2x_{2}=4\)
cho phương trình: \(x^{2}-(m+4)x+m-1=0\).Tìm m để phương trình có hai nghiệm \(x_{1}\),\(x_{2}\)thỏa mãn:\(2x_{1}+3x_{2}=7\)
\(\Delta=\left(m+4\right)^2-4\left(m-1\right)=\left(m+2\right)^2+16>0;\forall m\)
Kết hợp hệ thức Viet và điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=m+4\\2x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_1+3x_2=3m+12\\2x_1+3x_2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3m+5\\x_2=-2m-1\end{matrix}\right.\)
Mặt khác: \(x_1x_2=m-1\)
\(\Rightarrow\left(3m+5\right)\left(-2m-1\right)=m-1\)
\(\Leftrightarrow6m^2+14m+4=0\Rightarrow\left[{}\begin{matrix}m=-2\\m=-\dfrac{1}{3}\end{matrix}\right.\)
Tìm tất các giá trị của tham số m để phương trình x ^ 2 - 2x - m ^ 2 - 2m - 1 = 0 có hai nghiệm phân biệt x_{1} x_{2} thỏa mãn điều kiện 2x_{1} ^ 2 - x_{2} ^ 2 - x_{1}*x_{2} - 8 = 0
Cho phương trình $x^{2}-2(m+1) x-4 m-12=0$ (ẩn $x$ ). Tìm $m$ để phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$ sao cho $x_{1}-x_{2}=4$.
Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(2m+2\right)^2-4\left(-4m-12\right)=4m^2+8m+4+16m+48\)
\(=4m^2+24m+52=4m^2+2.2m.6+36+16=\left(2m+6\right)^2+16>0\)
Vậy ta có đpcm
Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=-4m-12\end{cases}}\)
Ta có : \(x_1-x_2=4\Leftrightarrow\left(x_1-x_2\right)^2=16\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16\)(*)
mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(-4m-12\right)\)
\(=4m^2+16m+28\)
Thay vào (*) ta được : \(4m^2+16m+28-2\left(-4m-12\right)=16\)
\(\Leftrightarrow4m^2+24m+52=0\Leftrightarrow m=-3\pm2i\)
Cho phương trình ẩn $x: \quad x^{2}-(m+2) x+m=0 \quad(1)$.
a) Chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của $m$.
b) Tìm $\mathrm{m}$ để phương trình (1) có hai nghiệm $x_{1}, x_{2}$ thỏa mãn hệ thức $x_{1}+x_{2}-3 x_{1} x_{2}=2$.
a)\(x^2-\left(m+2\right)x+m=0\)
(a=1;b=-(m+2);c=m)
Ta có:\(\Delta=\left[-\left(m+2\right)\right]^2-4.1.m\)
\(=\left(m+2\right)^2-4m\)
\(=m^2+2m.2+2^2-4m\)
\(=m^2+4m+4-4m\)
\(=m^2+4\)
Vì\(m^2\ge0\forall m\Rightarrow m^2+4m\ge0\left(1\right)\)
Vậy pt luôn có nghiện với mọi m
b,Xét hệ thức vi-ét,ta có:
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=m\end{cases}}\)
Theo đề bài ,ta có:
\(x_1+x_2-3x_1x_2=2\)
\(\Leftrightarrow m+2-3m=2\)
\(\Leftrightarrow-2m+2=2\)
\(\Leftrightarrow-2m=2-2\)
\(\Leftrightarrow m=0\)[t/m(1)]
Vậy với m=0 thì pt thảo mãn điều kiện đề bài cho
a, Ta có : \(\Delta=\left(m+2\right)^2-4m=m^2+4m+4-4m=m^2+4>0\forall m\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m+2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
Lại có : \(x_1+x_2-3x_1x_2=2\Rightarrow m+2-3m=2\)
\(\Leftrightarrow-2m=0\Leftrightarrow m=0\)
a) Xét \(\Delta=\left[-\left(m+2\right)\right]^2-4\cdot1\cdot m=m^2+4m+4-4m=m^2+4\)
Vì \(m^2\text{ ≧ }0\Rightarrow m^2+4>0\Rightarrow\) phương trình đã cho luôn có 2 nghiệm phân biệt mọi m.
Cho phương trình: x2 - mx +m - 1=0. Gọi x1, x2 là 2 nghiệm của phương trình. Tìm GTLN: P = \(\dfrac{2x_{1}x_{2} + 3}{x_{1}^2 + x_{2}^2 +2(1+ x_{1}x_{2})}\)
Phương trình có 2 nghiệm x1, x2 ⇔ △ ≥ 0 ⇔ m2 - 4m + 4 ≥ 0 ⇔ (m-2)2 ≥ 0 ⇔ m ∈ R
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-1\end{matrix}\right.\)
=> P = \(\dfrac{2x_1.x_2+3}{x_1^2+x_2^2+2\left(1+x_1.x_2\right)}=\dfrac{2x_1.x_2+3}{x_1^2+x_2^2+2x_1.x_2+2}\)
= \(\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}\)
= \(\dfrac{2\left(m-1\right)+3}{m^2+2}\)
= \(\dfrac{2m+1}{m^2+2}\)
=> P(m2 + 2) = 2m + 1 => Pm2 - 2m + 2P - 1 = 0 (*)
Để m tồn tại thì phương trình (*) có nghiệm ⇔ △' ≥ 0
⇔ 1 - P(2P - 1) ≥ 0
⇔ 1 - 2P2 + P ≥ 0
⇔ (1 - P)(2P + 1) ≥ 0
⇔ \(-\dfrac{1}{2}\) ≤ P ≤ 1
P = \(-\dfrac{1}{2}\) ⇔ m = -2; P = 1 ⇔ m = 1
Vậy minP = \(-\dfrac{1}{2}\) ⇔ m = -2 ; maxP = 1 ⇔ m = 1
1) Vẽ đồ thị của hàm số $y=-2 x^{2}$.
2) Cho phương trình $x^{2}+(1-m) x-m=0$ (với $x$ là ẩn số, $m$ là tham số). Xác định các giá trị của $m$ để phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$ thỏa mãn điều kiện $x_{1}\left(5-x_{2}\right) \geq 5\left(3-x_{2}\right)-36$.
Bài 1 : Ta có : x 0 0
y 0 0
bài 1 là mình đặt x = 0 rồi y = 0 nhé, đặt số nào cũng được nha nhưng mình chọn số 0 vì nó dễ :v nên mn đừng thắc mắc nhá
Bài 2 :
Để pt có 2 nghiệm pb nên \(\Delta>0\)hay
\(\left(1-m\right)^2-4\left(-m\right)=m^2-2m+1+4m=\left(m+1\right)^2>0\)
\(\Leftrightarrow m>-1\)
Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m-1\\x_1x_2=\frac{c}{a}=-m\end{cases}}\)
Ta có : \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\Leftrightarrow5x_1-x_1x_2\ge15-5x_2-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\Leftrightarrow5m-5+m\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)kết hợp với đk vậy \(m>-1\)
Bài 4. Cho phương trình x ^ 2 - 2x + m - 2 = 0 (m là tham số). a) Tìm m để phương trình có một nghiệm x = - 2 Tính nghiệm còn lại b) Tìm m để phương trình có 2 nghiệm thỏa mãn: 1/x_{1} + 1/x_{2} = 2
a: Khi x=-2 thì pt sẽ là;
4+4+m-2=0
=>m+6=0
=>m=-6
=>x^2-2x-8=0
=>(x-4)(x+2)=0
=>x=4 hoặc x=-2
b: 1/x1+1/x2=2
=>(x1+x2)/(x1x2)=2
=>2/(m-2)=2
=>m-2=1
=>m=3
1) Tìm các tham số thực $m$ để phương trình $9 x^{2}-m x+1=0$ có nghiệm kép.
2) Cho $x_{1}$ và $x_{2}$ là hai nghiệm của phương trình $x^{2}-2 x-4=0$. Tính giá trị của biểu thức $T=x_{1}\left(x_{1}-2 x_{2}\right)+x_{2}\left(x_{2}-2 x_{1}\right)$.
Bài 2 :
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=-4\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=4\Rightarrow x_1^2+x_2^2=4+8=12\)
Ta có : \(T=x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)\)
\(=x_1^2-2x_2x_1+x_2^2-2x_1x_2=12+16=28\)