1. Với giá trị nào của x thì căn thức sau đây có nghĩa
✓a^3/b^2
Với giá trị nào của x thì các biểu thức sau có nghĩa?
a,Căn 2(x + 3)
b,Căn x^2 - x + 1
c,Căn x -1 / căn x + 1 (dấu căn của mình x)
bài 1 Với giá trị nào của x thì căn thức sau có nghĩa:
a) \(\sqrt{\left(x-2\right)\left(x-6\right)}\)
b) \(\sqrt{1-x^2}\)
\(\sqrt{-5x-10}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(-1\le x\le1\)
c: ĐKXĐ: \(x\le-2\)
a. \(\sqrt{\left(x-2\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-6\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge6\end{matrix}\right.\) \(\Leftrightarrow x\ge6\)
b. \(\sqrt{1-x^2}\) có nghĩa \(\Leftrightarrow1-x^2\ge0\) \(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{-5x-10}\) có nghĩa \(\Leftrightarrow-5x-10\ge0\Leftrightarrow-5x\ge10\Leftrightarrow x\ge-2\)
với giá trị nào của x thì căn thức sau có nghĩa
\(\sqrt{\dfrac{x^2+2x+4}{2x-3}}\)
a, với giá trị nào của a thì căn thức sau có nghĩa \(\sqrt{\frac{a^2+1}{1-2a}}\)
b, biểu thức sau xác định với giá trị vào của x \(\sqrt{5x^2+4x+7}\)
Bài 1 (2điểm)
1) Nêu điều kiện để √a có nghĩa ?
2) Áp dụng: Tìm x để các căn thức sau có nghĩa:
Bài 2: ( 3 điểm ): Rút gọn biểu thức
Bài 3 ( 4 điểm ) Cho biểu thức
(Với x > 0; x 1; x4)
a/ Rút gọn P.
b/ Với giá trị nào của x thì P có giá trị bằng 1/4
c/ Tính giá trị của P tại x = 4 + 2√3
d/ Tìm số nguyên x để biểu thức P có giá trị là số nguyên ?
Bài 4 : ( 1 điểm ): Cho
Tìm giá trị nhỏ nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
Với giá trị nào của x thì căn thức sau có nghĩa?
\(\sqrt{\frac{2}{3}x}+1\)
cần 2/3x lớn hơn hoặc =0
=>x lớn hơn hoặc bằng 0
a) \(\sqrt{\dfrac{1}{3-2x}}\)
Đề bài với giá trị nào của x thì mỗi căn thức sau có nghĩa
giải chi tiết hộ mình với ạ!!!
Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa
Khi\(\dfrac{1}{3-2x}\ge0\)
\(\Leftrightarrow3-2x>0\)
\(\Leftrightarrow-2x< -3\)
\(\Leftrightarrow x>\dfrac{3}{2}\)
Với giá trị nào của x thì mỗi căn thức sau có nghĩa:
a) \(\sqrt{x-2\sqrt{x-1}}\)
VỚI GIÁ TRỊ NÀO CỦA X THÌ MỖI CĂN THỨC SAU CÓ NGHĨA
\(\sqrt{\dfrac{1}{-1+1x}}\)
\(\sqrt{\dfrac{1}{-1+x}}=\sqrt{\dfrac{1}{x-1}}\) có nghĩa khi:
\(\left\{{}\begin{matrix}\dfrac{1}{x-1}\ge0\\x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
\(ĐKXĐ:\dfrac{1}{-1+1x}>0\Leftrightarrow-1+1x< 0\\ \Leftrightarrow x< -1\)
Với giá trị nào của x thì căn thức sau có nghĩa :
a)\(\frac{1}{\sqrt{x^2-5x+6}}\)
Để Giá trị của x có nghĩa thì:
\(\sqrt{x^2-5x+6}>0\) => \(x^2-5x+6>0\)
Phân tích Mẫu Thức ta có:
\(\sqrt{x^2-5x+6}=\sqrt{x^2-2x-3x+6}=\sqrt{\left(x^2-2x\right)-\left(3x-6\right)}\)
\(=\sqrt[]{x\left(x-2\right)-3\left(x-2\right)}=\sqrt{\left(x-2\right)\left(x-3\right)}\)
Để mẫu thức khác 0 thì :
\(\left(x-2\right)\ne0\) hoặc \(\left(x-3\right)\ne0\)
\(\Leftrightarrow\) \(x\ne2\)hoặc \(x\ne3\)(1)
Để mẫu thức ko âm ( lớn hơn 0 )
*Trường hợp 1: \(x-2>0\)hoặc \(x-3>0\)
=> \(x>2\)hoặc \(x>3\)(2)
*Trường hợp 2: \(x-2< 0\)hoặc \(x-3< 0\)
=> \(x< 2\)hoặc \(x< 3\)(3)
Từ (1),(2) và (3) ta có:
=> \(x>3\) hoặc \(x< 2\)
Chúc bạn học tốt :#
ĐK: \(x^2-5x+6>0\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x-3\right)>0\)
TH1: \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>2\\x>3\end{cases}}\)\(\Leftrightarrow\)\(x>3\)
TH2: \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 2\\x< 3\end{cases}}\)\(\Leftrightarrow\)\(x< 2\)
Vậy \(\orbr{\begin{cases}x>3\\x< 2\end{cases}}\)