Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN LÊ ANH MINH
Xem chi tiết
Hồ Lê Phương Nam
Xem chi tiết
Rồng Đom Đóm
10 tháng 5 2019 lúc 19:53

\(\Leftrightarrow2+9abc\ge7\left(ab+bc+ca\right)\)(1)

Đặt \(\left\{{}\begin{matrix}abc=r\\ab+bc+ca=q\\a+b+c=p\end{matrix}\right.\)

Ta có:\(r\ge\frac{p\left(4q-p^2\right)}{9}\)(cái này bạn gõ schur trên gg là ra)

\(\Leftrightarrow9r\ge4q-1\)

\(\Rightarrow2+9r\ge2+4q-1=1+4q\)

Lại có:\(3q\le p^2=1\)(bạn tự chứng minh)

\(\Rightarrow1+4q\ge3q+4q=7q\)

\(\Rightarrow2+9r\ge7q\left(đpcm\right)\)

"="\(\Leftrightarrow a=b=c=\frac{1}{3}\)

asdqwe123
Xem chi tiết
Luân Đào
14 tháng 1 2019 lúc 10:16

Áp dụng bất đẳng thức Cô-si:

\(VT\ge3\sqrt[3]{\left(abc\right)^2}\cdot3\sqrt[3]{abc}=9\sqrt[3]{\left(abc\right)^3}=9\)

Dấu "=" khi a = b = c

dbrby
Xem chi tiết
Vũ Quang Trường
Xem chi tiết
TC2 Worlds
Xem chi tiết
tth_new
13 tháng 2 2018 lúc 18:49

Ta có: a , b , c > 0  => a , b , c là 3 số thực dương thỏa mãn điều kiện: ab + ac + bc = 0

Áp dụng tính chất tỉ dãy số bằng nhau ta có:

\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}=\frac{a^4+b^4+c^4}{b+3+c+3a+a+3b}\)

\(\Leftrightarrow\frac{a^4+b^4+c^4}{4a+4b+4c}=\frac{a^4+b^4+c^4}{4\left(a+b+c\right)}=\frac{3}{4}\) (Đúng với đề bài)

\(\RightarrowĐPCM\)

Ps; Không chắc nha! Mình chưa học lớp 9

mùa đông Cô nàng
Xem chi tiết
yoyo2003ht
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 3 2021 lúc 10:26

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Khách vãng lai đã xóa