a)Với mọi x>o,y>0
Chứng minh : \(\frac{x}{y}\)+\(\frac{y}{x}\)≥2
chứng minh rằng với mọi x,y lớn hơn 0 thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}>=\frac{10}{\left(x+y\right)^2}\)
Áp dụng BĐT Cauchy, ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)
\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)
\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)
\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)
Dấu = xảy ra khi \(x=y>0\)
Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)
1, Cho x+y=2 Chứng minh x4+y4\(\ge2\)
2,Với mọi a,b Chứng minh a4+ b4\(\ge a^3b+ab^3\)
3, Cho a>0 , b>0. Chứng minh \(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
4, Chứng minh: x4+y4\(\le\frac{x^6}{y^2}+\frac{y^6}{x^2}\)với xva2 y khác 0.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
1/Thêm 6 vào 2 vế,ta cần c/m:
\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)
Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:
\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)
Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)
ai biết giúp mình với mai ktra rồi .Chứng minh với mọi x, y:\(x^4+y^4\ge x^3y+xy^3\)
cho x,y > 0. Chứng minh : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
cho x2+y2=1.Chứng minh: \(\left(x+y\right)^2\le2\)
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
ta có \(\left(x-y\right)^2\ge0\)
<=> \(x^2+y^2\ge2xy\)
<=>\(x^2+y^2+2xy\ge4xy\)
<=>\(\left(x+y\right)^2\ge4xy\)
<=>\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
<=>\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Chứng minh rằng : A = \(\frac{xy^2+y^2+y^2\left(y^2-x\right)+1}{x^2y^4+2y^4+x^2+2}>0\)0 Với mọi x,y
Chứng minh rằng : A = \(\frac{xy^2+y^2+y^2\left(y^2-x\right)+1}{x^2y^4+2y^4+x^2+2}>0\) Với mọi x,y
Chứng minh rằng với mọi x, y khác 0 thì : \(\frac{x^3}{y}\ge-y^2+xy+x^2\).
\(bdt< =>x\left(x+y\right)\le\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{y}< =>x^2-xy+y^2\ge xy\)
\(< =>\left(x-y\right)^2\ge0\)(dpcm)
Chứng minh rằng với mọi x, y > 0 ta có \(\frac{2}{x^2+2y^2+3}< =\frac{1}{xy+y+1}\)
\(\frac{2}{x^2+y^2+y^2+1+2}\le\frac{2}{2xy+2y+2}=\frac{1}{xy+y+1}\)
Dấu "=" xảy ra khi \(x=y=1\)
Chứng minh rằng hệ phương trình sau có 1 nghiệm duy nhất với mọi a
\(\int^{7x+y-\frac{a^3}{x^2}=0}_{7y+x-\frac{a^3}{y^2}=0}\)
bạn ơi =12345678
tích cho mình nhé!
a) CMR: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right).\left(x+y+z\right)>=9\) với mọi x, y, z >0
b) Cho các số dương x, y, z thỏa mãn x + y + z <= 3
Chứng minh rằng: \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}>=670\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)