Cho a,b,c>0 Thỏa mãn abc=8 tìm MIN của Q=(a+b)(b+c)(c+a)
cho a,b,c >0 thỏa mãn ; a+b+c=\(\frac{1}{abc}\)
Tìm min: P=(a+b)(a+c)
Cho a,b,c >0 thỏa mãn abc=1. Tìm min A=\(\dfrac{a^{2013}+b^{2013}+c^{2013}}{a^{2012}+b^{2012}+c^{2012}}\)
\(a^{2012}+b^{2012}+c^{2012}\ge3\sqrt[3]{\left(abc\right)^{2012}}=3\)
\(\Rightarrow\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\le\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge-\dfrac{1}{3}\)
Lại có:
\(a^{2013}+a^{2013}+...+a^{2013}\left(\text{2012 số hạng}\right)+1\ge2013\sqrt[2013]{\left(a^{2013}\right)^{2012}}=2013.a^{2012}\)
\(\Rightarrow2012.a^{2013}+1\ge2013.a^{2012}\)
Tương tự: \(2012.b^{2013}+1\ge2013.b^{2012}\) ; \(2012.c^{2013}+1\ge2013.c^{2012}\)
Cộng vế với vế:
\(\Rightarrow a^{2013}+b^{2013}+c^{2013}\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012}\)
\(\Rightarrow A\ge\dfrac{2013\left(a^{2012}+b^{2012}+c^{2012}\right)-3}{2012\left(a^{2012}+b^{2012}+c^{2012}\right)}=\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{a^{2012}+b^{2012}+c^{2012}}\ge\dfrac{2013}{2012}-\dfrac{3}{2012}.\dfrac{1}{3}=1\)
\(A_{min}=1\) khi \(a=b=c=1\)
cho a;b;c>0 thỏa mãn abc+ab+bc+ca=2.tìm min của
\(P=\frac{1}{ab+a+b}+\frac{1}{bc+b+c}+\frac{1}{ca+c+a}\)
Cho a,b,c>0 thỏa mãn : ab\(\ge12\),\(bc\ge8\)
Tìm Min của S= a+b+c+\(2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)+\frac{8}{abc}\)
có ở trong câu hỏi tương tự nhé
\(S=13\left(\frac{a}{18}+\frac{c}{24}\right)+13\left(\frac{b}{24}+\frac{c}{48}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{2}{ab}\right)+\left(\frac{a}{18}+\frac{c}{24}+\frac{2}{ac}\right)+\left(\frac{b}{8}+\frac{c}{16}+\frac{2}{bc}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{c}{12}+\frac{8}{abc}\right)\)Cô si các ngoặc là được nhé
có a,b,c là các số dương thỏa mãn abc=8. tìm Min của B=(a+b)(b+c)(c+a)
Cho a,b,c > 0 thỏa mãn a2+b2+c2=1
Tìm min \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}\)
ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^
nè đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\
cho a,b,c>0 thỏa mãn
\(a+b+c\ge3\)
Tìm min của A=\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\)
Cho a, b, c là các số thực thỏa mãn a > 0, b > 0 và \(f\left(x\right)=ax^2+bx+c\ge0\). . Tìm Min \(Q=\dfrac{4a+c}{b}\)
Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$
$\Leftrightarrow 4ac\geq b^2$
Áp dụng BĐT AM-GM:
$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$
Vậy $Q_{\min}=4$
Cho \(0\le a;b;c\le3\) thỏa a+b+c=6. Tìm min và max của Q=a^2+b^2+c^2+abc