Cho tam giác DEF vuông tại D viết tỉ lượng giác của góc E. Từ đó suy ra cách tính DE,DF,EF
Cho tam giác DEF vuông tại D có DE =5cm, DF =12cm. Tính các tỉ số lượng giác của góc E từ đó suy ra các tỉ số lượng giác của góc F
Lời giải:
$EF=\sqrt{ED^2+DF^2}=\sqrt{5^2+12^2}=13$ (cm) theo định lý Pitago
$\sin E=\frac{DF}{EF}=\frac{12}{13}$
$\cos E=\frac{ED}{EF}=\frac{5}{13}$
$\tan E=\frac{DF}{ED}=\frac{12}{5}$
$\cot E=\frac{1}{\tan E}=\frac{5}{12}$
Vì $\widehat{E}, \widehat{F}$ là 2 góc phụ nhau nên:
$\sin F=\cos E=\frac{5}{13}$
$\cos F=\sin E=\frac{12}{13}$
$\tan F=\cot E=\frac{5}{12}$
$\cot F=\tan E=\frac{12}{5}$
Cho tam giác DEF vuông tại D có DE=0,9cm ; DF=12cm và DH vuông góc với EF a) Viết tỉ số lượng giác tan E b) tính các tỉ số lượng giác của góc F
a: ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=>\(EF^2=0,9^2+12^2=144,81\)
=>\(EF=\sqrt{144,81}\)(cm)
Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)
=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)
b: Xét ΔDEF vuông tại D có
\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)
\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)
\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)
Cho tam giác DEF cân tại D. Gọi M,N lần lượt là trung điểm của DF và DE. Kẻ DH vuông góc với EF (H thuộc EF)
a) C/m HE =HF
b) Cho DE=DF=5, EF=6. Tính DH
c) C/m tam giác DME = tam giác DNF. Từ đó suy ra góc DEM = góc DFN
a: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của FE
hay HF=HE
b: EF=6cm nên HF=3cm
=>DH=4cm
c: Xét ΔDME và ΔDNF có
DM=DN
\(\widehat{EMD}\) chung
DE=DF
Do đó: ΔDME=ΔDNF
cho tam giác DEF vuông tại D có DE = 12 cm EF = 20 cm Kẻ DH vuông góc EF (H thuộc EF.)
a, Tính DF
b, Chứng minh tam giác EDF đồng dạng với tam giác DHF. Từ đó suy ra DF^2=FH.EF
Theo định lí Pytago tam giác DEF vuông tại D
\(DF=\sqrt{EF^2-DE^2}=16cm\)
b, Xét tam giác EDF và tam giác DHF
^DFE _ chung
^EDF = ^DHF = 900
Vậy tam giác EDF ~ tam giác DHF (g.g)
\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)
a: \(DF=\sqrt{20^2-12^2}=16\left(cm\right)\)
b: Xét ΔEDF vuông tại D và ΔDHF vuông tại H có
góc F chung
Do đó: ΔEDF\(\sim\)ΔDHF
TRẢ LỜI NHANH trong 10 PHÚT và Nhận thưởng
a, Theo định lí Pytago tam giác DEF vuông tại D
\(DF=\sqrt{EF^2-DE^2}=16cm\)
b, Xét tam giác EDF và tam giác DHF có
^EFD _ chung, ^EDF = ^DHF = 900
Vậy tam giác EDF ~ tam giác DHF (g.g)
\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)
Cho tam giác DEF vuông tại D . Trên cạnh EF lấy điểm A sao cho ED = EA, từ A vẽ đường vuông góc với EF cắt cạnh DF tại B và Cắt cạnh DE kéo dài tại C
A) Tam giác ADE là tam giác gì? Vì sao?
B)Chứng minh: tam giác DEB = tam giác AEB , từ đó suy ra: DB = AB
C)Chứng minh: BF > BD
a: Xét ΔEDA có ED=EA
nên ΔEDA cân tại E
b: Xét ΔDEB vuông tại D và ΔAEB vuông tại A có
BE chung
ED=EA
DO đó: ΔDEB=ΔAEB
Suy ra: DB=AB
Tam giác DEF vuông tựi D, đường cao DK. Biết DE=15,DF=25 a) Tính DK, EF b) Tính tỉ số lượng giác của góc F C) Tính góc E, F
tam giác DEF cân tại D có DE=DF=5cm, EF=6cm. Tia phân giác của góc E cắt DF tại M, phân giác của góc F cắt DE tại N. Tính DM. Tính tỉ số diện tích của ∆DMN và ∆DEF
a) Xét ΔDEF có
EM là đường phân giác ứng với cạnh DF(gt)
nên \(\dfrac{DM}{DE}=\dfrac{MF}{EF}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DM}{5}=\dfrac{MF}{6}\)
mà DM+MF=DF(M nằm giữa D và F)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DM}{5}=\dfrac{MF}{6}=\dfrac{DM+MF}{5+6}=\dfrac{DF}{11}=\dfrac{5}{11}\)
Do đó:
\(\dfrac{DM}{5}=\dfrac{5}{11}\)
hay \(DM=\dfrac{25}{11}cm\)
Vậy: \(DM=\dfrac{25}{11}cm\)
Cho tam giác DEF có DE = DF. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P thuộc DE), KQ vuông góc với DF (Q thuộc DF). Chứng minh:
a) K thuộc đường trung trực của EF và PQ;
b) DK là đường trung trực của EF và PQ. Từ đó suy ra PQ//EF.