Tìm số tự nhiên thoả mãn .13+23+33+43+53=a2
Trả lời: a=
tìm số tự nhiên a thoả mãn 13+23+33+33+53+63=a2
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Viết các tổng sau thành một bình phương của một Số tự nhiên:
a) 2 + 3 3 + 4 2 + 13 2
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3
a) 2 + 3 3 + 4 2 + 13 2 = 196 = 14 2
b, 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2
Viết các tổng sau thành một bình phương của một Số tự nhiên:
a) 2 + 3 2 + 4 2 + 13 2 ; b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3
a) 2 + 3 2 + 4 2 + 13 2 = 196 = 14 2
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2
Viết các tổng sau thành một bình phương của một Số tự nhiên:
a) 2 + 3 2 + 4 2 + 13 2 ;
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 .
a) 2 + 3 2 + 4 2 + 13 2 = 196 = 14 2
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2
A=7 phần 3×13+7 phần 13×23+7 phần 23×33+7 phần 33×43+7 phần 43×53+7 phần 53×63
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
7/3*13+ 7/13*23+ 7/23*33+ 7/33*43+ 7/43*53+ 7/53*63
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
a) Tính A 332 33 ...399 3100
B = 2 + 22 + 23 + 24 + … + 2100
b) Cho
2 3 101 A 133 3 ...3 . Chứng minh: A chia hết cho 13
c) Tìm tất cả các số tự nhiên n thoả mãn 5n + 14 chia hết cho n + 2
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
Bài 2: Các số sau có phải là số chính phương không?
1. 13 + 23 ; 13 + 23 + 33 ; 13 + 23 + 33 + 43 ; 13 + 23 + 33 + 43 + 53
2. 1262 + 1 ; 100! + 8 ; 1012 - 3 ; 1010 + 7 ; 11 + 112 + 113
3. 32 + 22 b) 62 + 82 c) 400 - 162 d) 2.3.45.7.9.11.13 + 2018 e) 13 + 23
4. m) 1262 + 1 n) 100!+ 8 p) 1012 - 3 q) 1010 + 7 k) 11 + 112 + 113
Mọi người trình bày đầy đủ hộ mình ạ!
Nhanh giúp ạ
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
Bài 3:
32 + 22 = 9 + 4 = 13 (không phải là số chính phương)
62 + 82 = 36 + 64 = 100 = 102 (là số chính phương)
2.3.45.7.9.11.13 + 2018 = \(\overline{...0}\) + 2018 = \(\overline{..8}\) (không phải là số cp)
Bài 4 giống bài 2
Viết các tổng sau thành một bình phương của một số tự nhiên: 13 + 23 + 33 + 43 + 53.
13 + 23 + 33 + 43 + 53
= 1+ 8 + 27 + 64 + 125 = 225 = 152